1. 关注常识网首页
  2. 生活常识

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

今天关注常识网给各位分享薛定谔定律的知识,其中也会对薛定谔定律公式分析解答,如果能解决你想了解的问题,关注本站哦。薛定谔定理是什么?是薛定谔方程 E.薛定谔提出...

今天关注常识网给各位分享薛定谔定律的知识,其中也会对薛定谔定律公式分析解答,如果能解决你想了解的问题,关注本站哦。薛定谔...更多薛定谔定律的这个问题,以及大家所关心的量子力学的核心:薛定谔方程,究竟神奇在哪里?的内容,欢迎大家继续关注我们提供的精彩分享。

薛定谔定律

今天关注常识网给各位分享薛定谔定律的知识,其中也会对薛定谔定律公式分析解答,如果能解决你想了解的问题,关注本站哦。

薛定谔定理是什么?

是薛定谔方程

E.薛定谔提出的量子力学基本方程 。建立于 1926年。它是一个非相对论的波动方程。它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场U(r,t)中运动的薛定谔方程为。在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。当势函数U不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量,Ψ(r)又称为属于本征值E的本征函数。

量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。

薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。

什么是薛定谔定律

薛定谔方程(Schrödinger equation)又称薛定谔波动方程(Schrodinger wave equation),是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定。

它是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。薛定谔方程表明量子力学中,粒子以概率的方式出现,具有不确定性,宏观尺度下失效可忽略不计。

扩展资料:

在1925年,瑞士苏黎世每两周会举办一场物理学术研讨会。有一次,主办者彼得·德拜邀请薛定谔讲述关于德布罗意的波粒二象性博士论文。那段时期,薛定谔正在研究气体理论,他从阅读爱因斯坦关于玻色-爱因斯坦统计的论述中,接触德布罗意的博士论文,在这方面有很精深的理解。在研讨会里,他将波粒二象性阐述的淋漓尽致,大家都听的津津有味。

德拜指出,既然粒子具有波动性,应该有一种能够正确描述这种量子性质的波动方程。他的意见给予薛定谔极大的启发与鼓舞,他开始寻找这波动方程。检试此方程最简单与基本的方法就是,用此方程来描述氢原子内部束缚电子的物理行为,而必能复制出玻尔模型的理论结果,另外,这方程还必须能解释索末菲模型给出的精细结构。

很快,薛定谔就通过德布罗意论文的相对论性理论,推导出一个相对论性波动方程,他将这方程应用于氢原子,计算出束缚电子的波函数。但很可惜。因为薛定谔没有将电子的自旋纳入考量,所以从这方程推导出的精细结构公式不符合索末菲模型。

他只好将这方程加以修改,除去相对论性部分,并用剩下的非相对论性方程来计算氢原子的谱线。解析这微分方程的工作相当困难,在其好朋友数学家赫尔曼·外尔鼎力相助下,他复制出了与玻尔模型完全相同的答案。因此,他决定暂且不发表相对论性部分,只把非相对论性波动方程与氢原子光谱分析结果,写为一篇论文。1926年,他正式发表了这论文。

这篇论文迅速在量子学术界引起震撼。普朗克表示“他已阅读完毕整篇论文,就像被一个迷语困惑多时,渴慕知道答案的孩童,现在终于听到了解答”。爱因斯坦称赞,这著作的灵感如同泉水般源自一位真正的天才。

爱因斯坦觉得,薛定谔已做出决定性贡献。由于薛定谔所创建的波动力学涉及到众所熟悉的波动概念与数学,而不是矩阵力学中既抽象又陌生的矩阵代数,量子学者都很乐意地开始学习与应用波动力学。自旋的发现者乔治·乌伦贝克惊叹,“薛定谔方程给我们带来极大的解救!”沃尔夫冈·泡利认为,这论文应可算是近期最重要的著作。

薛定谔给出的薛定谔方程能够正确地描述波函数的量子行为。在那时,物理学者尚不清楚如何诠释波函数,薛定谔试图以电荷密度来诠释波函数的绝对值平方,但并不成功。1926年,玻恩提出概率幅的概念,成功地诠释了波函数的物理意义。

但是薛定谔与爱因斯坦观点相同,都不赞同这种统计或概率方法,以及它所伴随的非连续性波函数坍缩。爱因斯坦主张,量子力学是个决定性理论的统计近似。在薛定谔有生的最后一年,写给玻恩的一封信中,他清楚地表示他不接受哥本哈根诠释。

参考资料:关注常识网 薛定谔方程

想知道薛定谔定律什么?

薛定谔定理如下:

就是在量子力学之中,体系的状态是不可以直接使用力学量值来进行确定的,而是需要使用的力学的函数,波函数,这样才能够确定,所以这个波函数就成为了量子力学所需要研究的主要对象了。薛定谔定律可以说是量子力学方面的一个基本方程式。

该定律最早是在1926年提出的,是由奥地利的著名物理学家薛定谔最早提出。主要就是描述了微观粒子的状态,是会随着时间的变化而呈现出来的规律,这种状态是需要使用波函数来进行相应的表示的,薛定谔定律也就是波函数方面的微分方程。

薛定谔的猫是奥地利著名物理学家薛定谔提出的一个思想实验,是指将一只猫关在装有少量镭和氰化物的密闭容器里。镭的衰变存在几率,如果镭发生衰变,会触发机关打碎装有氰化物的瓶子,猫就会死;如果镭不发生衰变,猫就存活。

根据量子力学理论,由于放射性的镭处于衰变和没有衰变两种状态的叠加,猫就理应处于死猫和活猫的叠加状态。这只既死又活的猫就是所谓的“薛定谔猫”。但是,不可能存在既死又活的猫,则必须在打开容器后才知道结果。

该实验试图从宏观尺度阐述微观尺度的量子叠加原理的问题,巧妙地把微观物质在观测后是粒子还是波的存在形式和宏观的猫联系起来,以此求证观测介入时量子的存在形式。随着量子物理学的发展,薛定谔的猫还延伸出了平行宇宙等物理问题和哲学争议。

薛定谔定律是什么

薛定谔提出的量子力学基本方程

。建立于

1926年。它是一个非相对论的波动方程。它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场U(r,t)中运动的薛定谔方程为。在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。当势函数U不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量,Ψ(r)又称为属于本征值E的本征函数。

量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。

薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋

薛定谔定律是什么 定义 ?应用?

“薛定谔方程(Schrodinger equation)又称薛定谔波动方程(Schrodinger wave equation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当。

薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,其正确性只能靠实验来确定。”---引自关注常识网。

主要应用于微观物理学,如果楼主不是研究量子物理的,这些方程几乎完全应用不到实践中。但某些现实的情况无法用经典力学的概念去阐释,例如,运动物体的电磁过程与牛顿力学所遵从的相对性原理不一致,爱因斯坦发现并解决了这个问题,但“天才”耗费了后半生,试图将“统一场论”的概念将宏观与微观的物理学有机的结合在一起,最终以失败告终。这个理论也被认为是“世间万物变化的最根本原理。”而人类想要探索这个原理,光靠几个“天才”是远远不够的。

方程在表述中,将时间和空间完整的分割,从而可以由定态方程转变为动态,最终可以完整表达出离子的波动函数。

薛定谔正如他的猫所表述的那样,量子的叠加态这个过程是不能被确定的,我们只能观测到结果。就好比:我在家中何处是不确定的,你看我一眼,我就突然现身于某处——客厅、餐厅、厨房、书房或卧室都有可能,而在你看我之前,我像云雾般隐身在家中,穿墙透壁到处游荡。在你意识到“需要看到我”,我便“应声出现”。薛定谔为了解释这样一种不确定性,从而用一个二阶偏微分方程来阐释他所认为的微观世界,即“不能确定离子出现的位置,直到他被我们观测到,并且通过方程来表达出现在这一位置的概率。”

薛定谔定律什么梗

薛定谔定律就是薛定谔的猫,是薛定谔设计的一个思想实验,目的是对人类意识具有特殊的独特地位说法进行的嘲讽。划重点,嘲讽,或者说反讽。

它的意思是:如果哥本哈根派物理学家们认为人类意识具有特殊地位,那么按照薛定谔的实验操作,就会制造一只即死又活的猫,而即死又活的猫显然是荒谬的。从而,薛定谔暗示,人类意识决定波函数坍缩,这个观点是荒谬的,爱因斯坦也这么认为。

薛定谔猫的定律是一个不确定的实验,而且这项实验还很著名。这项实验讲的是薛定谔把猫放在了黑暗的盒子中,过了很久也不知道猫是死是活。所以必须要看一眼盒子里面的情况,才能下结论。这就出现了猫的生死就取决于看了一眼之后,才能决定的,这说起来有点绕,还让人捉摸不透。所以也就容易产生误解,理解错意思的。


薛定谔定律拓展阅读

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

量子力学的核心:薛定谔方程,究竟神奇在哪里?

科学无国界

我们是知识的搬运工

福利时间

今天我们将送出由高等教育出版社提供的优质科普书籍《材料力学趣话》。

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

《材料力学趣话》以科普小专题的形式,介绍身边事物的若干材料力学相关研究,包括豆荚弹射籽粒和黄瓜卷须自攀援的双层预应力条设计、捕蝇草捕食昆虫的力学原理、超强韧贝壳和超柔韧蜘蛛丝的跨尺度微结构、雾姥甲虫“斗”雾、人厌槐叶萍“闭”水、复合材料的乘积效应、人类精湛复杂的折纸技艺、自然简约神妙的折纸运动与折纸型超材料的研究等。

本书注重从《Science》《Nature》等国际顶级科技期刊选材,同时结合作者的科研和教学积累,可供中学生、大学生和中等文化程度以上的读者阅读

只要你认真阅读下面的这篇文章,思考文末提出的问题,严格按照 互动:你的答案 格式在评论区留言,就有机会获得奖品!

作者:Marianne Freiberger

翻译:ignhysp

审校:Nour

教科书上有一个典型的问题:当你汽车的油耗尽后,你需要多大的力去推动它,才能够将它加速到给定的速度呢?来自于牛顿运动第二定律的答案是:F=ma,其中a是加速度,m为质量,F为力的大小。这个非常直接而又精妙的定律能够描绘各种各样的运动。至少在理论上它可以解答这个世界的所有物理问题。

真的么?当人们开始从极小的尺度去思考这个世界时,比如:电子绕着原子核旋转,他们意识到一切变得非常奇怪,牛顿定律好像不能用了。为了描写这个微观的世界,你需要用到二十世纪初期发展而来的量子力学。这个理论的核心是薛定谔方程,可以类比经典力学中的牛顿第二定律

波和粒子

在经典力学中,我们用位置和动量来描述一个物理系统的状态”,剑桥大学的理论物理学家纳齐姆·布瓦塔解释道。例如:你有一个桌子,上面放了许多可以移动的台球,只要你知道了每一个球在某个时刻t的位置和动量(动量是质量乘以速度),你就可以知道这个系统在这个时刻t的所有信息:一切物体的运动状态和速度。“ 我们会问:如果我们知道系统的初始状态,即,如果我们知道系统在t时刻的状态,那么系统的状态将会如何演化?我们可以用牛顿第二定律解决这个问题。在量子力学中,如果问同样的问题,得到的答案却是棘手的,因为位置和动量不再是描述这个系统的合适的变量了。”

问题的关键是:量子力学试图去描述的对象及其行为并不是像小小的台球那么简单,有时将它想象为波更好一些。“以光作为例,牛顿除了在引力方面的工作,对光也非常感兴趣。”布瓦塔说,“根据牛顿的理论,光可以被描述为粒子。但是之后,根据许多其他科学家对其进行的研究,包括詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)提供的理论理解,我们发现,光用波来描述。”

但是在1905年的时候,爱因斯坦意识到,波的图像也不完全正确。为了解释光电效应,你需要将光束想象为粒子流,爱因斯坦称这种粒子为光子。光子的数目正比于光强,每个光子的能量正比于频率:

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

其中

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

,它是普朗克常数,是一个非常小的常数,以马克斯-普朗克(Max Planck)的名字命名,1900年他在黑体辐射的工作中已经猜出了这个公式。“现在我们面临的问题是,描述光的正确方式是有时将它看成波,有时将其看成粒子”,布瓦塔说。

爱因斯坦的结果可以联系到科学界长久以来的努力,从十七世纪克里斯蒂安·惠更斯便开始尝试,十九世纪威廉·哈密顿继续进行探索,他们都想要统一关于光的波动性与粒子性的物理。被光在不同情况下的特性激励,年轻的法兰西物理学家路易·维克多·德布罗意在这个探索的旅程中迈出了激动人心的一步:他假定不止光,物质也有这种可称之为波粒二象性的特性。物质的基本组成单位,比如电子,也是在一些情况下表现的像粒子,一些情况下像波。

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

德布罗意(Louis de Broglie), 1892-1987.

德布罗意于1920年提出的观点,与其说基于实验的证据而进行的猜想,不如说是受到爱因斯坦的相对论激发而产生的理论上的飞跃。但是不久之后科学家便发现了相应实验证据。在十九世纪二十年代晚期,粒子被晶格散射的实验证实了电子的“类波”本质。

证明波粒二象性的最著名的实验是双缝干涉实验。在这个实验中,电子(或其他粒子如光子或中子)被射出,会在同一时刻穿越有两个狭缝的屏幕。在这个屏幕后还有一个屏幕,可用来探测电子通过狭缝后最终到达的位置。但是,你在探测屏幕上实际看到的是干涉模式:如果假设电子是波,你才会看到这种模式。波同时穿过两个狭缝,然后当它向一个方向传播时,它与自身相互干涉。然而在探测屏幕上,当它刚到达时,电子是以粒子的状态被注意到,这与我们所预期的相同。事实上这个看起来非常奇怪的结果,是已经被重复无数次的实验事实—所以我们必须接受这就是世界运行的方式。

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

双缝干涉实验:由穿过狭缝的波的干涉模式

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

双缝干涉实验:当粒子被发射出狭缝预期结果

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

双缝干涉实验:粒子(比如电子)穿过狭缝时实际上会发生什么:你会得到类似波的干涉模式,但是电子是作为粒子到达的。

薛定谔方程

由德布罗意提出的新图像需要新的物理。与一个粒子有关的波到底有怎样的数学形式呢?爱因斯坦已经将光子的能量E与光波的频率f联系了起来,通过公式

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

我们知道频率与波长有关。这里c 是光速。采用相对论的结果,我们可以将光子的能量与动量联系起来。综合上述结论可给出在光子的波长 λ与动量 p之间的关系式:

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

其中h为普朗克常数。

基于此,德布罗意假设波长与动量之间的关系式应该对于任何粒子都成立。此时,最好先放弃你的直觉,不去想表现的像波的粒子究竟意味着什么,而是仅跟着数学的逻辑走下去。

在经典力学中,波(比如声波和水波)随时间的演化,可用波动方程来描述:其是一个微分方程,解为波函数,可以给出在任意时刻服从恰当边界条件的波的形状。

举例来说,假设波沿在x方向延伸的弦传播,在xy平面内振动。为了完全描述这个波,你需要知道在每个点x每个时刻t弦在y方向的位移。利用牛顿第二运动定律可知遵循如下波动方程:

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

v为波速。

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

上图为在xy平面内弦振动的照片,这里的波可被余弦函数所描述。

上述方程的一般解相当复杂,反映出弦可以根据各种方式进行摆动的事实。并且你需要更多的信息(初始条件和边界条件)来搞清楚到底是哪种运动。但是,作为一个例子,

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

函数描述了沿正x方向以角频率ω传播的波,则正如你所预期的,它是波动方程一个可能的解。

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

薛定谔方程以薛定谔的名字来命名,1887-1961.

类似,应当有一个波动方程,来统御神秘的物质波随时间的演化。它的解应该是波函数(不要把它想成实际的波),它会告诉你量子系统(比如:在箱子中运动的单个粒子)在时刻的所有信息。奥地利物理学家欧文·薛定谔(Erwin Schrödinger)在1926年想出了这个方程的。对于在三维空间中运动的单个粒子,方程可被写为如下形式:

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

其中为粒子的势能,势能是x, y, z ,t 的函数, m为粒子质量,h为普朗克常数。方程的解是波函数ψ(x,y,z,t)。

在一些情况下,势能不依赖时间t。在这种情况下,我们经常通过考虑更简单的时间独立的薛定谔方程来求解这个问题,在这个方程中,ψ(x,y,z)仅依赖空间,有使得以下关系成立:

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

E其中为粒子总能量。则整个方程的解为:

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

这些方程可应用于在三维空间运动的单粒子,对于有任意粒子的系统,也有相应的方程来描述。如果不把波函数写成位置和时间的函数,人们也可以将它们化为动量和时间的函数。

进入不确定性

我们可以从一个简单的例子(比如在无限深势阱中运动的单个粒子)出发来求解薛定谔方程,它的解与描述一个波的数学方程非常相似。

这个解到底意味着什么?它并不会给出粒子在给定时刻的精确位置,也不会给出一个粒子随时间变化的轨迹。更确切的说,它在给定时间的所有可能位置(x,y,z)可以给出你一个值ψ(x,y,z,t)。这个值意味着什么?在1926年时,物理学家波恩(Max Born)提出了统计诠释。他假设,波函数绝对值的平方薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)会给出在时刻t位置找到粒子的概率密度。换句话说,粒子在时间t出现在区域的概率由如下积分给出:

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

这个概率图像与德布罗意关于粒子波长和动量关系公式有令人吃惊的联系。海森堡在1927年发现,如果要测量一个运动粒子的位置和动量,人们有一个基本的精度限制。在某一方面如果想要测量的精度越高,其他方面人们能说的就越少。这并不是指测量仪器的质量问题,而是自然界根本就具有的不确定性。这个结果现在称为海森堡的不确定性原理,且是常常用来引述量子力学奇怪现象的几个结果之一。它意味着在量子力学里我们谈论不了粒子的位置或轨道。

薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)

海森堡(Werner Heisenberg), 1901-1976.

“如果我们相信不确定性图像,由于我们对于像‘电子在时刻在哪里’这样的问题没有明确的答案,换句话说,所有量子状态的数学表示和状态都只能给我们概率的结果”,布瓦塔说。“德布罗意、薛定谔和爱因斯坦尝试提供一个真实的诠释,比如:在真空中传播的光波。但是,还有一些物理学家,泡利、海森堡和玻尔反对给出现实的图像。对于他们而言,波函数仅仅是计算概率的一个工具。”

它真的适用么?

为什么我们要相信这个异想天开的想法呢?在这篇文章中我们已经展示了薛定谔方程,好像它是从空中生拉硬拽出来的,但是它实际来自于哪里呢?著名的物理学家理查德.费曼认为这是个无意义的问题:“我们从哪里得到这个方程?它不能由你所知道的任何知识来推导出来。它来自于薛定谔的大脑。”

然而,这个方程已经经受住了迄今为止的每一个实验的考验。“这是量子力学中最基本的方程”,布瓦塔说,“这是我们想要描述的所有量子力学系统(如:电子、质子、中子等系统)的出发点。”这个方程早期成功地描述了氢原子的离散能谱,促成了量子力学的建立,这也是薛定谔的动因之一。根据欧内斯特·卢瑟福的原子模型,像氢原子这样的原子所发出的光的频率应该是连续的。然而实验表明:它并没有连续变化,氢原子只放出特定频率的光,当频率改变时有跳跃。这个发现与传统的哲学智慧背道而驰,传统的哲学思想是支持由十七世纪的哲学家和数学家戈特弗里德·莱布尼茨所说的格言的:“大自然不会跳跃(nature does not make jumps)”。

在1913年尼尔斯·玻尔提出了一个新的原子模型,在这个模型中,电子被限制到了特定的能级。薛定谔将它的方程应用于氢原子,发现他的解精确重复了由玻尔设定的能级。“这是一个激动人心的结果,也是薛定谔方程最初的主要成就之一”,布瓦塔说。

由于无数成功实验的支持,薛定谔方程在量子力学中已成为牛顿第二定律的类似物和替代品。

原文来源:https://plus.maths.org/content/schrodinger-1

互动问题

【互动问题:假如你的猫被薛定谔捉走了,要求你说出自己对量子力学的理解才能放猫,你会说什么?

请大家严格按照 互动:问题答案的格式在评论区留言参与互动,格式不符合要求者无效。

截止到本周四中午12点,点赞数前三名的朋友将获得我们送出的图书一本。

编辑:aki


以上就是关于薛定谔定律(量子力学的核心:薛定谔方程,究竟神奇在哪里?)的所有内容,希望对你有所帮助。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人,并不代表关注常识网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。

联系我们

在线咨询:点击这里给我发消息

微信号:CHWK6868

工作日:9:30-18:30,节假日休息