1. 关注常识网首页
  2. 科普知识

光纤接入详细资料大全(接入网技术的目录)

光纤接入指的是终端用户通过光纤连线到局端设备。根据光纤深入用户的程度的不同,光纤接入可以分为FTTB(Fiber To The Building,光纤到楼),...

很高兴有机会和大家一起谈论接入网的分类的话题。这个问题集合包含了一些常见和深入的问题,我将详细回答每一个问题,并分享我的见解和观点。

光纤接入详细资料大全(接入网技术的目录)

光纤接入详细资料大全

光纤接入指的是终端用户通过光纤连线到局端设备。根据光纤深入用户的程度的不同,光纤接入可以分为FTTB(Fiber To The Building,光纤到楼),FTTP/FTTH(将光缆一直扩展到家庭或企业),FTTO,FTTC等。光纤是宽频网路中多种传输媒介中最理想的一种,它的特点是传输容量大,传输质量好,损耗小,中继距离长等。

基本介绍 中文名 :光纤接入 外文名 :Fiber Aess 特点 :传输容量大,传输质量好,损耗小 简介,接入结构,接入步骤,适用范围,接入方式,乙太网接,优点,技术特点,接入方式,分类与业务,网路接入,公司接入,最新动态,统计数据, 简介 光纤接入是指局端与用户之间完全以光纤作为传输媒体。光纤接入可以分为有源光接入和无源光接入。光纤用户网的主要技术是光波传输技术。光纤传输的复用技术发展相当快,多数已处于实用化。复用技术用得最多的有时分复用(TDM)、波分复用(WDM)、频分复用(FDM)、码分复用(CDM)等。根据光纤深入用户的程度,可分为FTTC、FTTZ、FTTO、FTTB、FTTH等。光纤通信不同于有线电通信,后者是利用金属媒体传输信号,光纤通信则是利用透明的光纤传输光波。虽然光和电都是电磁波,但频率范围相差很大。一般通信电缆最高使用频率约为9~24兆赫( Hz),光纤工作频率在 ~ Hz之间。 光纤接入网 光纤接入网是指以光纤为传输介质的网路环境。光纤接入网从技术上可分为两大类:有源光网路(AON,Active Optical Neork)和无源光网路(PON,Passive Optical Neork)。有源光网路又可分为基于SDH的AON和基于PDH的AON;无源光网路可分为窄带PON和宽频PON。 由于光纤接入网使用的传输媒介是光纤,因此根据光纤深入用户群的程度,可将光纤接入网分为FTTC(光纤到路边)、FTTZ(光纤到小区)、 FTTB(光纤到大楼)、FTTO(光纤到办公室)和FTTH(光纤到户),它们统称为FTTx。FTTx不是具体的接入技术,而是光纤在接入网中的推进程度或使用策略。 接入结构 接入环路的三种系统结构分别为FTTN、FTTC和FTTH。 在网路发展过程中,每种结构都有其套用和优势,而目在经济地向全业务问演进 过程中,每种结构都是关键的一环。FTTN给人们带来的好处是它将光纤进一步推向用户网路。它建立起一个连线网际网路的平台,能提供话音、高速数据和视频业务给众多的家庭而不需要完全重建接入环路和分配网路。根据需求,可以在光纤节点处增加一个外挂程式,即可提供所需业务。在因业务驱动或网路重建使光纤节点移到路边FTTC或家庭(FTTH)之前,FTTN将叠加于并利用现有的铜线分配网路。 这种网路结构的基本要求是为了提供宽频或视频业务,节点与住宅的距离应当在4000到5000英尺的范围内。而当今的节点一般的服务距离可达12000英尺。因此,每个服务区需要安装3到5个FTTN节点。 FTTC或FATH光纤(光纤几乎到家)比FTTN多几个优点。当采用FTTC重建现有网路时,可消除由电缆传输可能带来的误差。它使光纤更深入到用户网路中,这可减少潜在的网路问题的发生和由于现场操作引起的性能恶化。FTTC是最健壮和“可部署的”的网路,是将来可演进到FTTH的网路。它同样是新建区和重建区最经济的网路建设方案。 这种网路结构的一个缺点是需要提供铜线供电系统。一个位于局端的远程供电系统能给50到100个路边光网路单元供电、每个路边节点采用单独的供电单元代价非常高而且在持久停电时不能满足长期业务要求。 作为提供光纤到家的最终网路形式,FTTH去掉了整个铜线设施:馈线、配线和引入线。对所有的宽频套用,这种结构是最健壮和长久的未来解决方案。它还去掉了铜线所需要的所有维护工作并大大延长了网路寿命。 网路的连线末端是用户住宅设备。在用户家里,需要一个网路终接设备将频宽和数据流转换成可接收的视频信号(NTSC或PAL制)或数据连线(10兆乙太网)。有两种设备可采用非对林数字用户线(ADSL和G.Lite数据机(用于数据业务和INTERNET接入)或处理宽频的VDSL住宅同关(用于视频和数据业务)。 与局端HDT一样住宅网关(RG)设备是家庭内所有业务的接太平台。它提供网路连线以及将所有业务分配给住宅的各个网元。RG设备是所有网路结构(包括FTTN、FTTC和FTTH)的网路接口,因此它能适应各种配置的平滑过渡。 接入步骤 ⑴ 在客户端使用普通的路由器(例如华为 2621 )串列接口与客户端光纤Modem相连; ⑵客户端光纤Modem 通过光纤直接与离客户端最近的城域网节点的光纤 Modem 相连; ⑶ 最后通过ISP公司的骨干网出口接入到 Inter 。 适用范围 不同的光纤接入技术有不同的适用场合。 有源光接入技术适用频宽需求大、对通信保密性高的企事业单位的接入。它也可以用在接入网的馈线段和配线段,并与基于无线或铜线传输的其他接入技术混合使用。 光纤接入 ATM-PON既可以用来解决企事业用户的接入,也可以解决住宅用户的接入。有的运营商利用“ATM-PON + xDSL”混合接入方案,解决住宅用户或企事业用户的宽频接入。 窄带PON主要面向住宅用户,也可用来解决中小型企事业用户的接入。 另外,PON的服务范围不超过20公里,但通过“有源光网路+无源光网路”混合组网方案,可弥补该弊端。 接入方式 光纤接入能够确保向用户提供10MBPS,100MBPS,1000MBPS的高速频宽,可直接汇接到CHINANET骨干结点。主要适用于商业集团用户和智慧型化小区区域网路的高速接入INTERNET高速互联。可向用户提供三种具体接入方式。 光纤 + 乙太网接入 适用对象:已做好或便于综合布线及系统集成的小区住宅与商务楼宇等。 光纤接入 所需的主要网路产品:交换机,集线器,超五类线等。 光纤 + HOMPEPNA 适用对象:未做好或不便于综合布线及系统集成的小区住宅与酒店楼宇等。 所需的主要网路产品:HOMEPNA专用交换机(HUB) HOMEPNA专用终端产品(MODEM)等。 光纤 +VDSL 适用对象:未做好或不便于综合布线及系统集成的小区住宅与酒店楼宇等。 所需的主要网路产品:VDSL专用交换机VDSL专用终端产品。 光纤+五类缆接入(FTTx+ LAN) 以"千兆到小区、百兆到大楼、十兆到用户"为实现基础的光纤+五类缆接入方式尤其适合我国国情。它主要适用于用户相对集中的住宅小区、企事业单位和大专院校。FTTX是光纤传输到(路边、小区、大楼-),LAN为区域网路。主要对住宅小区、高级写字楼及大专院校教师和学生宿舍等有宽频上网需求的用户进行综合布线,个人用户或企业单位就可通过连线到用户计算机内乙太网卡的5类网线实现高速上网和高速互联。 光纤直接接入 是为有独享光纤高速上网需求的大企事业单位或集团用户提供的,传输频宽2M起,根据用户需求频宽可以达到千兆或更大的频宽。 业务特点:可根据用户群体对不同速率的需求,实现高速上网或企业区域网路间的高速互联。同时由于光纤接入方式的上传和下传都有很高的频宽,尤其适合开展远程教学、远程医疗、视频会议等对外信息发布量较大的网上套用。 适合的用户群体:居住在已经或便于进行综合布线的住宅、小区和写字楼的较集中的用户;有独享光纤需求的大企事业单位或集团用户。 乙太网接 近一时期,服务提供商一直在兜售高密度光纤骨干网,企业用户也在等待这类高速服务的提交。尽管保证提供海量可用频宽的高密度光纤网已经建成,但对网路服务的需求却被封闭在基于时分复用(TDM)的本地环路接入技术的框框之内。对频宽需求不断变化的企业用户由于为增加一条T-1线路需要等待数周或因升级到T-3线路而等上几个月而感到不满。 非常具有发展前景的解决方案将使正在部署的光纤带 宽,能够利用软体来取代穿过僵化的TDM基础设施的硬连线网路接入来配置多种服务,并且每种服务可以具有不同的服务水平以及软体命令远程调节的速度保证。这类以满足对多种服务额外频宽需要为目标的软体可调服务,只需几天而不是数周的时间,并且无需高昂的工程费用或现场升级就可以完成配置,在需要时可以立即精确地提供所需频宽容量。乙太网可以实现这一目标。乙太网非常适于从光纤网路提交软体可调节的频宽,它具有普遍的可用性并且价格低廉,可以很容易达到1Gbps的速度,并且不久可以达到10Gbps的速度。连线到家门口的光纤支持乙太网技术的话,一条连线线路可以达到从每秒64K到数千兆位的任何速度,并可以用于访问所有的广域网服务。 光纤接入 灵活提供的服务代表着DSL和基于有线电缆宽频服务之后的下一个高速技术,它们将使企业用户最终可以利用传输基础设施核心中的光纤部署。 提交基於乙太网的服务所需的条件是智慧型的光纤接入平台,这种平台使服务提供商可以从传统的基于TDM的服务迁移到最佳化的数据包服务,并使用户可以在提供频宽保证的多服务光纤连线上传送如IP语音这类多服务、广域传输流。 优点 光纤接入--电缆 ⑴ 容量大:光纤工作频率比电缆使用的工作频率高出8--9个数量级,故所开发的容量大。 ⑵ 衰减小:光纤每公里衰减比容量最大的通信同轴电缆每公里衰减要低一个数量级以上。 ⑶ 体积小、重量轻,同时有利于施工和运输。 ⑷ 防干扰性能好:光纤不受强电干扰、电气信号干扰和雷电干扰,抗电磁脉冲能力也很强,保密性好。 ⑸ 节约有色金属:一般通信电缆要耗用大量的铜、铅或铝等有色金属。光纤本身是非金属,光纤通信的发展将为国家节约大量有色金属。 ⑹扩容便捷:一条频宽为 2Mbps 的标准光纤专线很容易就可以升级到 4M 、 10M 、 20M ,100M,其间无需更换任何设备。 光导纤维是一种传输光束的细微而柔韧的媒质。光导纤维电缆由一捆光纤组成 , 简称为光缆。光缆是数据传输中最有效的一种传输介质,它的优点和光纤的优点类似,主要有以下几个方面: (1)频带较宽。 (2) 电磁绝缘性能好。光纤电缆中传输的是光束,由于光束不受外界电磁干扰与影响,而且本身也不向外辐射信号,因此它适用于长距离的信息传输以及要求高度安全的场合。当然,抽头困难是它固有的难题,因为割开的光缆需要再生和重发信号。 (3) 衰减较小。可以说在较长距离和范围内信号是一个常数。 (4)中继器的间隔较大,因此可以减少整个通道中继器的数目,可降低成本。根据贝尔实验室的测试,当数据的传输速率为 420Mbps 且距离为 119 公里 无中继器时,其误码率为 , 传输质量很好。而同轴电缆和双绞线每隔几千米就需要接一个中继器。 技术特点 光纤接入--接入设备 1.有源光网路 顾名思义,有源光网路的局端设备(CE) 和远端设备( RE)通过有源光传输设备相连,传输技术是骨干网中已大量采用的SDH和PDH技术,但以SDH技术为主。远端设备主要完成业务的收集、接口适配、复用和传输功能。局端设备主要完成接口适配、复用和传输功能。此外,局端设备还向网元管理系统提供网管接口。在实际接入网建设中,有源光网路的拓扑结构通常是星形或环形。 有源光网路具有以下技术特点: 光纤接入 ◆ 传输容量大,用在接入网的SDH传输设备一般提供155Mb/s或622Mb/s的接口,有的甚至提供2.5Gb/S的接口。将来只要有足够业务量需求,传输频宽还可以增加,光纤的传输频宽潜力相对接入网的需求而言几乎是无限的。 ◆ 传输距离远,在不加中继设备的情况下,传输距离可达70~80公里。 ◆ 用户信息隔离度好。有源光网路的网路拓扑结构无论是星形还是环形,从逻辑上看,用户信息的传输方式都是点到点方式。 ◆ 技术成熟,无论是SDH设备还是PDH设备,均已在乙太网中大量使用。 由于SDH/PDH技术在骨干传输网中大量使用,有源光接入设备的成本已大大下降,但在接入网中与其他接入技术相比,成本还是比较高。 2.ATM无源光网路(ATM-PON) ATM-PON最重要的特点就是其无源点到多点式的网路结构。它综合了ATM技术和无源光网路技术,可以提供现有的从窄带到宽频等各种业务。ATM-PON由OLT、ONU/ONT和无源光分路器组成。其中,Splitter是光分路器,它根据光的传送方向,将进来的光信号分路并分配到多条光纤上,或是组合到一条光纤上。ONU/ONT主要完成业务的收集、接口适配、复用和传输功能,OLT主要完成接口适配、复用和传输功能。此外,OLT还向网元管理系统提供网管接口。 ODN(光配线网)中光分路器的工作方式是无源的,这就是无源光网路中“无源”一词的来历。但ONU和OLT还是工作在有源方式下,即需要外接电源才能正常工作。所以,采用无源光网路接入技术并不是所有设备都工作在不需要外接馈电的条件下,只是ODN部分没有有源器件。 3.窄带无源光网路(窄带PON) 窄带PON的网路拓扑结构与ATM-PON一样,它与ATM-PON存在以下主要区别: ◆ ATM-PON是宽频接入技术,可以给用户提供大于2Mb/s的接入速率;窄带PON是窄带接入技术,只支持窄带业务,给用户提供的接入速率最大为2Mb/s。 ◆窄带PON的线路速率远小于ATM-PON。其线路速率一般在20Mb/s到50Mb/s之间。 ◆窄带PON的传输采用电路方式,而ATM-PON采用分组方式(ATM信元)。 ◆窄带PON的网路侧接口一般为V5接口,用户侧接口为现有各种窄带业务接口;ATM-PON网路侧接口一般为ATM接口,用户侧接口包括各种宽窄带业务接口。 ◆窄带PON的标准化程度不如ATM-PON。窄带PON是先有产品,后有标准;ATM-PON是产品和标准几乎同时出来。 除以上几点区别外,窄带PON的其他特点与ATM-PON相同。窄带PON的设备价格下降很快,已经接近窄带接入中广泛套用的IDLC(综合数字环路载波)的价格。 接入方式 随着IP业务的爆炸式增长和我国电信运营市场的日益开放,无论是传统电信运营商还是新兴运营商,为了在新的竞争环境中立于不败之地,都把建设面向IP业务的电信基础网作为他们的网路建设重点。 接入层技术方案以光纤接入网为主,使光纤进一步向用户靠近,便于为用户提供高质量的综合业务。但宽频光纤接入网是一个对业务、技术、成本十分敏感的领域,而且投资比重大、建设周期长,需结合当地现有电信网路和国民经济发展的具体情况,总体布局、网路结构、规模容量,充分考虑建设成本和网路的灵活性,制定出一套合理的宽频接入网规划方案尤为重要。 分类与业务 根据业务需求对象即用户类型的不同,将宽频用户类型大致分为以下七类: *** 机关、金融证券、智慧型大厦、住宅小区、宾馆酒店、学校医院和企业科研。 1.1 *** 机关用户 *** 机关是一个重要的市场领域,由于其地位特殊,对社会的影响力较大,他们对宽频接入的需求主要是来源于“ *** 上网工程”和办公的信息化,公开化。随着各行各业信息化进程的加快,城市范围内计算机网路互联业务需求变是更加迫切。 1.2 金融证券用户 金融证券用户是电信运营商一大客户,主要开展数据通信、计算机联网等各类互动式多媒体业务,为金融、银行及证券公司等提供专网服务,实现银行、信用社的通存通兑等业务。 1.3 智慧型大厦用户 智慧型大厦、高层写字楼是商业客户等集团用户最密集的地方,这些集团用户一般都是电信运营商的大客户,集团用户对资费的敏感度低于家庭用户,用户的需求是要能提供综合、可靠、安全的网路业务,宽频高速互联接入、区域网路互联及其他基于宽频接入网的业务如高速数据传输、数据中心、视频会议等都有广阔的市场前景,这些用户同样会有IP电话的需求。 1.4 住宅小区用户 随着人们对信息渴望程度的日益提高,在智慧型小区、生活小区建设宽频信息化小区已成为各电信运营商竞争的一大焦点,对于各电信运营商而言,这既是增值业务的发展点,也是一个介入电信业务新领域的切入点。在这些商住小区建设宽频信息化,向用户提供高速上网业务、小区的信息社区服务包括社区管理、电子商务、VOD、事务处理等等。 1.5 宾馆酒店用户 随着酒店管理系统的不断完善,酒店上网业务必将成为今后的热门话题。酒店上网业务提高了宾馆酒店的知名度以及服务档次,在为顾客提供优质服务的同时,在增加了其自身的效益。客人可以在酒店上Inter进行工作和商务活动,也可以通过Inter查询酒店情况,进行酒店的预定、结帐等活动,极大地方便了顾客。 1.6 学校医院用户 学校医院对宽频接入的需求来源于电子化教学、远程教育、远程医疗和信息化社区等。 1.7 企业科研用户 企业上网主要是通过上网了解国内外经济形式,在网上捕捉商机,发掘新的市场空间,同时还可以在网上宣传企业。科研单位通过上网实现远程数据处理、监测控制及异地科研合作等业务。 网路接入 住宅接入(residential aess):将家庭端系统与网路相连。 公司接入(company aess):将商业或教育机构中的端系统与网路相连。 2.1 住宅接入 将家庭端系统(如PC)与边缘路由器相连线。 2.1.1 通过拨号数据机(dial-up modem) 将家庭端系统通过普通模拟电话线用拨号数据机与ISP相连。是一种常用、流行的形式。家用数据机将PC输出的数位讯号转换为模拟形式,以便在模拟电话线(双绞线)上传输。 缺陷是由于双绞线质量较低,用户获得的有效速率远低于56kbit/s,下载时间长。 如,下载一首3分钟的MP3歌曲大约需要8分钟。用户上网和拨打普通电话不能同时进行。 2.1.2 频宽接入技术 为住宅用户提供更高的比特率;用户可以同时接入网际网路和打电话。两种常用类型:数字用户线(digital subsscriber line,DSL )和混合光纤同轴电缆 (hybrid fiber coaxial cable ,HFC)。 2.1.2.1 数字用户线DSL接入 由电话公司或与独立ISP合伙的公司提供。 特点是与拨号数据机类似,但一般下载速率超过上载速率,而且实际实现速率要低。 2.1.2.2 HFC 是传统广播电视电缆系统的改进。采用同轴电缆和光纤混合接入方式,每个相邻域连线点支持500到500个家庭用户。 特点是划分为两个信道:即下行信道和上行信道。下行信道频宽更大,传输速率更快,由所有家庭共享;如果几个用户同时下载,各个用户接收的实际速率大大下降。几个用户同时传送分组将会冲突,降低上行频宽的效用。 2.1.3 比较 DSL在家庭和ISP之间建立了一条点对点连线,所有频宽专用非共享; ?HFC比DSL频宽更高; ?DSL和HFC可随时提供服务:用户打开计算机后,一直与ISP连线,并能够同时拨打和接听普通电话。 公司接入 2.2.1 利用区域网路(LAN)连线端用户和边缘路由器。 先将多个端系统连线成区域网路:如采用乙太网技术(速率高可达10Mbps、100Mbps、1GMbps、 10Gbps),用双绞线或同轴电缆将端系统彼此连线; 再与边缘路由器连线:边缘路由器负责为目的地不在本区域网路的分组选路。 乙太网技术: 共享乙太网:端系统共享乙太网的传输速率; 交换乙太网:使用多个双绞线乙太网段与交换机相连,使得乙太网的全部频宽能够同时为同一个区域网路上的不同用户传递报文。 2.2.2 光纤接入 2.2.2.1 概念 光线接入网采用光纤做为主要的传输媒体来取代传统的双绞线。由于光纤上传送的是光信号,因而需要在交换局将电信号进行电光转换变成光信号后再在光纤上进行传输。在用户端则要利用光网路单元(ONU)再进行光电转换恢复成电信号后送至用户设备。 2.2.2.2 套用形式 根据光纤向用户延伸的距离,也就是ONU 所设定的位置,光线接入网又有多种套用形式,其中最主要的三种形式是光纤到大楼(FTTB)、光纤到路边(FTTC)、光纤到户(FTTH)。 FTTC主要为住宅用户提供服务。ONU 放置在路边,从ONU 出来用同轴电缆传送视像业务,双绞线对传送普通电话业务,,每个ONU 一般可为8 ~32个用户服务,适合为独门独院的用户提供各种宽频业务,如VOD 等。 FTTB有分为两种,一种是为公寓大楼用户服务,实际上只是把FTTC中的ONU 从路边移至公寓大楼内;另一种是为办公大楼服务的,ONU 设定在大楼内的配线箱处,为大中型企事业单位及商业用户服务,可提供高速数据、电子 商务、可视图文、远程医疗、远程教育等宽频业务。FTTB与FTTC并没有什么根本不同,两者的差异在于服务的对象不同,因而所提供的业务不同,ONU 后面所采用的传输媒介也有所不同。 FTTH则是将ONU 放置在住户家中,有住户专用。为家庭提供各种综合宽频业务,如VOD 、居家购物、多方可视游戏等等。 2.2.2.3 优缺点 光纤接入网,特别是FTTH光纤接入网,具有频频宽、容量大、信号质量好、可靠性高、可以提供多种业务乃至未来宽频互动型业务、是实现B-ISDN的最佳方案等优点,因而被认为是接入网的发展方向。但光纤接入网成本昂贵,平均用户成本平均3000~5000美元,普通用户难以承受。尽管FTTB、FTTC采用若干用户共用ONU 以分摊成本、降低平均成本的方式,但却带来供电困难等问题。 3. 汇接设定选址原则 由于宽频光纤接入网工程建设尚未形成既定的技术标准和规范根据,汇接节点设定选址主要遵循以下原则: 3.1 一个汇接节点覆盖范围为以500m为半径区域或5-15幢多层建筑群。 3.2 一个汇接节点的收容用户数量一般为300-1000户,最多不超过1000户。 3.3 汇接节点尽量与其他电信设施合用,以解决节点设备机房问题。 3.4 汇接节点的位置应便于光缆和电缆的出入。 3.5 汇接节点的位置应避免有腐蚀性气体、易遭雷击、高压输电线下、强干扰区、潮湿地区、低洼地、防洪堤坝附近等易遭破坏的地方,设备必须放在室内。 最新动态 北京市经信委和信息资源处发布了《北京市“十二五”时期城市信息化和重大信息基础设施建设规划》。政策显示,在未来的三年内(2013年至2015年期间),北京计画着重建设城乡光纤网路覆盖,到2015年达到城乡与社区光纤的全面覆盖,彻底由以前的铜线时代进入光网时代,同时计画将家庭宽频的速度提升至百兆速度。 统计数据 2014年5月发布的通信业经济运行情况中,全国行动电话用户5月净增449.4万户,总数达到12.56亿户,其中,xDSL用户比上年末减少443.8万户,占宽频用户比重下降至52.1%;光纤接入FTTH/0用户比上年末净增1119.3万户,总数突破5000万户,占宽频用户比重达26.4%,“光进铜退”现象显著。 我国高速率宽频用户比重正稳步提升。1-5月,三家基础电信企业网际网路宽频接入用户净增843.4万户,达到1.97亿户。宽频提速效果明显,“光进铜退”现象显著。xDSL用户比上年末减少443.8万户,占宽频用户比重下降至52.1%;光纤接入FTTH/0用户比上年末净增1119.3万户,总数突破5000万户,占宽频用户比重达26.4%,今年以来月均提升1个百分点。

互联网的‘光纤’、‘ADSL’、‘ISDN’有什么区别?

分类: 电脑/网络 >> 互联网

解析:

光钎:

是采用光纤传输技术的接入网,即本地交换局和用户之间全部或部分采用光纤传输的通信系统。光纤具有宽带、远距离传输能力强、保密性好、抗干扰能力强等优点,是未来接入网的主要实现技术。FTTH方式指光纤直通用户家中,一般仅需要一至二条用户线,短期内经济性欠佳,但却是长远的发展方向和最终的接入网解决方案。

ADSL:

ADSL是英文Asymmetrical Digital Subscriber Loop(非对称数字用户环路)的英文缩写,ADSL技术是运行在原有普通电话线上的一种新的高速宽带技术,它利用现有的一对电话铜线,为用户提供上、下行非对称的传输速率(带宽)。

非对称主要体现在上行速率(最高640Kbps)和下行速率(最高8Mdps)的非对称性上。上行(从用户到网络)为低速的传输,可达640Kbps;下行(从网络到用户)为高速传输,可达8Mbps。它最初主要是针对视频点播业务开发的,随着技术的发展,逐步成为了一种较方便的宽带接入技术,为电信部门所重视。通过网络电视的机顶盒,可以实现许多以前在低速率下无法实现的网络应用。

ISDN:

ISDN综合业务数字网是数字传输和数字交换综合而成的数字电话网,英文缩写为ISDN。它能实现用户端的数字信号进网,并且能提供端到端的数字连接,从而可以用同一个网络承载各种话音和非话音业务。ISDN基本速率接口包括两个能独立工作的64Kb的B信道和一个16Kb的D信道,选择ISDN 2B+D端口一个B信道上网,速度可达64Kb/s,比一般电话拨号方式快2.2倍(若Modem的传输速率为28.8Kb/s)。若两个B信道通过软件结合在一起使用时,通信速率则可达到128Kb/s。

总的来说光钎最好。

通信光缆接入网的应用类型有哪些

一, 光纤的分类

光纤是光导纤维(OF:Optical Fiber)的简称。但光通信系统中常常将 Opti

cal Fibe(光纤)又简化为 Fiber,例如:光纤放大器(Fiber Amplifier)或光

纤干线(Fiber Backbone)等等。有人忽略了Fiber虽有纤维的含义,但在光系统

中却是指光纤而言的。因此,有些光产品的说明中,把fiber直译成“纤维”,显然

是不可取的。

光纤实际是指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材

料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯

中传播前进的媒体。

光纤的种类很多,根据用途不同,所需要的功能和性能也有所差异。但对于有

线电视和通信用的光纤,其设计和制造的原则基本相同,诸如:①损耗小;②有一

定带宽且色散小;③接线容易;④易于成统;⑤可靠性高;⑥制造比较简单;⑦价

廉等。

光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上

作一归纳的,兹将各种分类举例如下。

(1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、

1.55pm)。

(2)折射率分布:阶跃(SI)型、近阶跃型、渐变(GI)型、其它(如三角型、W型、

凹陷型等)。

(3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。

(4)原材料:石英玻璃、多成分玻璃、塑料、复合材料(如塑料包层、液体纤芯等)、

红外材料等。按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料

等。

(5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有

管律法(Rod intube)和双坩锅法等。

二, 石英光纤

是以二氧化硅(SiO2)为主要原料,并按不同的掺杂量,来控制纤芯和包层的

折射率分布的光纤。石英(玻璃)系列光纤,具有低耗、宽带的特点,现在已广泛

应用于有线电视和通信系统。

掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。通常,作为

1.3Pm波域的通信用光纤中,控制纤芯的掺杂物为二氧化绪(GeO2),包层是用SiO

炸作成的。但接氟光纤的纤芯,大多使用SiO2,而在包层中却是掺入氟素的。由于,

瑞利散射损耗是因折射率的变动而引起的光散射现象。所以,希望形成折射率变动

因素的掺杂物,以少为佳。

氟素的作用主要是可以降低SIO2的折射率。因而,常用于包层的掺杂。由于掺

氟光纤中,纤芯并不含有影响折射率的氟素掺杂物。由于它的瑞利散射很小,而且

损耗也接近理论的最低值。所以多用于长距离的光信号传输。

石英光纤(Silica Fiber)与其它原料的光纤相比,还具有从紫外线光到近红

外线光的透光广谱,除通信用途之外,还可用于导光和传导图像等领域。

三, 红外光纤

作为光通信领域所开发的石英系列光纤的工作波长,尽管用在较短的传输距离,

也只能用于2pm。为此,能在更长的红外波长领域工作,所开发的光纤称为红外光纤。

红外光纤(Infrared Optical Fiber)主要用于光能传送。例如有:温度计量、

热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。

四, 复台光纤

复合光纤(Compound Fiber)在SiO2原料中,再适当混合诸如氧化钠(Na2O)、

氧化硼(B2O2)、氧化钾(K2O2)等氧化物的多成分玻璃作成的光纤,特点是多成

分玻璃比石英的软化点低且纤芯与包层的折射率差很大。主要用在医疗业务的光纤

内窥镜。

五, 氟化物光纤

氯化物光纤(Fluoride Fiber)是由氟化物玻璃作成的光纤。这种光纤原料又

简称 ZBLAN(即将氟化铝(ZrF4)、氰化钡(BaF2)、氟化镧(LaF3)、氟化铝

(A1F2)、氰化钠(NaF)等氯化物玻璃原料简化成的缩语。主要工作在2~ 10pm

波长的光传输业务。

由于ZBLAN具有超低损耗光纤的可能性,正在进行着用于长距离通信光纤的可

行性开发,例如:其理论上的最低损耗,在3pm波长时可达10-2~10-3dB/km,而

石英光纤在1.55pm时却在0.15~0.16dB/Km之间。

目前,ZBLAN光纤由于难于降低散射损耗,只能用在2.4~2.7pm的温敏器和热

图像传输,尚未广泛实用。

最近,为了利用ZBLAN进行长距离传输,正在研制1.3pm的掺错光纤放大器(PD

FA)。

六, 塑包光纤

塑包光纤(Plastic Clad Fiber)是将高纯度的石英玻璃作成纤芯,而将折射

率比石英稍低的如硅胶等塑料作为包层的阶跃型光纤。它与石英光纤相比较,具有

纤芯租、数值孔径(NA)高的特点。因此,易与发光二极管LED光源结合,损耗也

较小。所以,非常适用于局域网(LAN)和近距离通信。

七, 塑料光纤

这是将纤芯和包层都用塑料(聚合物)作成的光纤。早期产品主要用于装饰和

导光照明及近距离光键路的光通信中。

原料主要是有机玻璃(PMMA)、聚苯乙稀(PS)和聚碳酸酯(PC)。损耗受到

塑料固有的C-H结合结构制约,一般每km可达几十dB。为了降低损耗正在开发应用

氟索系列塑料。由于塑料光纤(Plastic Optical fiber)的纤芯直径为1000pm,

比单模石英光纤大100倍,接续简单,而且易于弯曲施工容易。近年来,加上宽带化

的进度,作为渐变型(GI)折射率的多模塑料光纤的发展受到了社会的重视。最近,

在汽车内部LAN中应用较快,未来在家庭LAN中也可能得到应用。

八, 单模光纤

这是指在工作波长中,只能传输一个传播模式的光纤,通常简称为单模光纤

(SMF:Single ModeFiber)。目前,在有线电视和光通信中,是应用最广泛的光纤。

由于,光纤的纤芯很细(约10pm)而且折射率呈阶跃状分布,当归一化频率V参

数<2.4时,理论上,只能形成单模传输。另外,SMF没有多模色散,不仅传输频带

较多模光纤更宽,再加上SMF的材料色散和结构色散的相加抵消,其合成特性恰好形

成零色散的特性,使传输频带更加拓宽。

SMF中,因掺杂物不同与制造方式的差别有许多类型。凹陷型包层光纤(DePr-

essed Clad Fiber),其包层形成两重结构,邻近纤芯的包层,较外倒包层的折射

率还低。另外,有匹配型包层光纤,其包层折射率呈均匀分布。

九, 多模光纤

将光纤按工作彼长以其传播可能的模式为多个模式的光纤称作多模光纤(MMF:

MUlti ModeFiber)。纤芯直径为50pm,由于传输模式可达几百个,与SMF相比传输

带宽主要受模式色散支配。在历史上曾用于有线电视和通信系统的短距离传输。自

从出现SMF光纤后,似乎形成历史产品。但实际上,由于MMF较SMF的芯径大且与LED

等光源结合容易,在众多LAN中更有优势。所以,在短距离通信领域中MMF仍在重新

受到重视。

MMF按折射率分布进行分类时,有:渐变(GI)型和阶跃(SI)型两种。GI型

的折射率以纤芯中心为最高,沿向包层徐徐降低。从几何光学角度来看,在纤芯中

前进的光束呈现以蛇行状传播。由于,光的各个路径所需时间大致相同。所以,传

输容量较SI型大。

SI型MMF光纤的折射率分布,纤芯折射率的分布是相同的,但与包层的界面呈

阶梯状。由于SI型光波在光纤中的反射前进过程中,产生各个光路径的时差,致使

射出光波失真,色激较大。其结果是传输带宽变窄,目前SI型MMF应用较少。

十, 色散使移光纤

单模光纤的工作波长在1.3Pm时,模场直径约9Pm,其传输损耗约0.3dB/km。

此时,零色散波长恰好在1.3pm处。

石英光纤中,从原材料上看1.55pm段的传输损耗最小(约0.2dB/km)。由于

现在已经实用的掺铒光纤放大器(EDFA)是工作在1.55pm波段的,如果在此波段也

能实现零色散,就更有利于应用1.55Pm波段的长距离传输。

于是,巧妙地利用光纤材料中的石英材料色散与纤芯结构色散的合成抵消特性,

就可使原在1.3Pm段的零色散,移位到1.55pm段也构成零色散。因此,被命名为色

散位移光纤(DSF:DispersionShifted Fiber)。

加大结构色散的方法,主要是在纤芯的折射率分布性能进行改善。

在光通信的长距离传输中,光纤色散为零是重要的,但不是唯一的。其它性能

还有损耗小、接续容易、成缆化或工作中的特性变化小(包括弯曲、拉伸和环境变

化影响)。DSF就是在设计中,综合考虑这些因素。

十一 色散平坦光纤

色散移位光纤(DSF)是将单模光纤设计零色散位于1.55pm波段的光纤。而色

散平坦光纤(DFF:Dispersion Flattened Fiber)却是将从1.3Pm到1.55pm的较

宽波段的色散,都能作到很低,几乎达到零色散的光纤称作DFF。由于DFF要作到

1.3pm~1.55pm范围的色散都减少。就需要对光纤的折射率分布进行复杂的设计。

不过这种光纤对于波分复用(WDM)的线路却是很适宜的。由于DFF光纤的工艺比较

复杂,费用较贵。今后随着产量的增加,价格也会降低。

十二 色散补偿光纤

对于采用单模光纤的干线系统,由于多数是利用1.3pm波段色散为零的光纤构

成的。可是,现在损耗最小的1.55pm,由于EDFA的实用化,如果能在1.3pm零色散

的光纤上也能令1.55pm波长工作,将是非常有益的。

因为,在1.3Pm零色散的光纤中,1.55Pm波段的色散约有16ps/km/nm之多。

如果在此光纤线路中,插入一段与此色散符号相反的光纤,就可使整个光线路的

色散为零。为此目的所用的是光纤则称作色散补偿光纤(DCF:DisPersion Compe-

nsation Fiber)。

DCF与标准的1.3pm零色散光纤相比,纤芯直径更细,而且折射率差也较大。

DCF也是WDM光线路的重要组成部分。

十三 偏派保持光纤

在光纤中传播的光波,因为具有电磁波的性质,所以,除了基本的光波单一

模式之外,实质上还存在着电磁场(TE、TM)分布的两个正交模式。通常,由于

光纤截面的结构是圆对称的,这两个偏振模式的传播常数相等,两束偏振光互不

干涉。但实际上,光纤不是完全地圆对称,例如有着弯曲部分,就会出现两个偏

振模式之间的结合因素,在光轴上呈不规则分布。偏振光的这种变化造成的色散,

称之偏振模式色散(PMD)。对于现在以分配图像为主的有线电视,影响尚不太大。

但对于一些未来超宽带有特殊要求的业务,如:①相干通信中采用外差检波,要

求光波偏振更稳定时;②光机器等对输入输出特性要求与偏振相关时;③在制作

偏振保持光耦合器和偏振器或去偏振器等时;④制作利用光干涉的光纤敏感器等,

凡要求偏振波保持恒定的情况下,对光纤经过改进使偏振状态不变的光纤称作偏

振保持光纤(PMF:Polarization Maintaining fiber),也有称此为固定偏振

光纤的。

十四 双折射光纤

双折射光纤是指在单模光纤中,可以传输相互正交的两个固有偏振模式的光

纤而言。因为,折射率随偏报方向变异的现象称为双折射。在造成双折射的方法

中。它又称作PANDA光纤,即偏振保持与吸收减少光纤(Polarization-maintai-

ning AND Absorption- reducing fiber)。它是在纤芯的横向两则,设置热

膨胀系数大、截面是圆形的玻璃部分。在高温的光纤拉丝过程中,这些部分收缩,

其结果在纤芯y方向产生拉伸,同时又在x方向呈现压缩应力。致使纤材出现光弹

性效应,使折射率在X方向和y方向出现差异。依此原理达到偏振保持恒定。

十五 抗恶环境光纤

通信用光纤通常的工作环境温度可在-40~+60℃之间,设计时也是以不受大

量辐射线照射为前提的。相比之下,对于更低温或更高温以及能遭受高压或外力

影响、曝晒辐射线的恶劣环境下,也能工作的光纤则称作抗恶环境光纤(Hard

Condition Resistant Fiber)。

一般为了对光纤表面进行机械保护,多涂覆一层塑料。可是随着温度升高,

塑料保护功能有所下降,致使使用温度也有所限制。如果改用抗热性塑料,如聚

四氟乙稀(Teflon)等树脂,即可工作在300℃环境。也有在石英玻璃表面涂覆

镍(Ni)和铝(A1)等金属的。这种光纤则称为耐热光纤(Heat Resistant Fib-

er)。

另外,当光纤受到辐射线的照射时,光损耗会增加。这是因为石英玻璃遇到

辐射线照射时,玻璃中会出现结构缺陷(也称作色心:Colour Center),尤在

0.4~0.7pm波长时损耗增大。防止办法是改用掺杂OH或F素的石英玻璃,就能抑

制因辐射线造成的损耗缺陷。这种光纤则称作抗辐射光纤(Radiation Resista-

nt Fiber),多用于核发电站的监测用光纤维镜等。

十六 密封涂层光纤

为了保持光纤的机械强度和损耗的长时间稳定,而在玻璃表面涂装碳化硅

(SiC)、碳化钛(TiC)、碳(C)等无机材料,用来防止从外部来的水和氢的

扩散所制造的光纤(HCF:HermeticallyCoated Fiber)。目前,通用的是在化

学气相沉积(CVD)法生产过程中,用碳层高速堆积来实现充分密封效应。这种

碳涂覆光纤(CCF)能有效地截断光纤与外界氢分子的侵入。据报道它在室温的

氢气环境中可维持20年不增加损耗。当然,它在防止水分侵入延缓机械强度的疲

劳进程,其疲劳系数(Fatigue Parameter)可达200以上。所以,HCF被应用于

严酷环境中要求可靠性高的系统,例如海底光缆就是一例。

十七 碳涂层光纤

在石英光纤的表面涂敷碳膜的光纤,称之碳涂层光纤(CCF:Carbon Coated

Fiber)。其机理是利用碳素的致密膜层,使光纤表面与外界隔离,以改善光纤

的机械疲劳损耗和氢分子的损耗增加。CCF是密封涂层光纤(HCF)的一种。

十八 金属涂层光纤

金属涂层光纤(Metal Coated Fiber)是在光纤的表面涂布Ni、Cu、A1等

金属层的光纤。也有再在金属层外被覆塑料的,目的在于提高抗热性和可供通

电及焊接。它是抗恶环境性光纤之一,也可作为电子电路的部件用。

早期产品是在拉丝过程中,涂布熔解的金属作成的。由于此法因被玻璃与

金属的膨胀系数差异太大,会增微小弯曲损耗,实用化率不高。近期,由于在

玻璃光纤的表面采用低损耗的非电解镀膜法的成功,使性能大有改善。

十九 掺稀土光纤

在光纤的纤芯中,掺杂如何(Er)、钦(Nd)、谱(Pr)等稀土族元素的

光纤。1985年英国的索斯安普顿(Sourthampton)大学的佩思(Payne)等首

先发现掺杂稀土元素的光纤(Rare Earth DoPed Fiber)有激光振荡和光放大

的现象。于是,从此揭开了惨饵等光放大的面纱,现在已经实用的1.55pmEDFA

就是利用掺饵的单模光纤,利用1.47pm的激光进行激励,得到1.55pm光信号放

大的。另外,掺错的氟化物光纤放大器(PDFA)正在开发中。

二十 喇曼光纤

喇曼效应是指往某物质中射人频率f的单色光时,在散射光中会出现频率f

之外的f±fR, f±2fR等频率的散射光,对此现象称喇曼效应。由于它是物质

的分子运动与格子运动之间的能量交换所产生的。当物质吸收能量时,光的振

动数变小,对此散射光称斯托克斯(stokes)线。反之,从物质得到能量,而

振动数变大的散射光,则称反斯托克斯线。于是振动数的偏差FR,反映了能级,

可显示物质中固有的数值。

利用这种非线性媒体做成的光纤,称作喇曼光纤(RF:Raman Fiber)。

为了将光封闭在细小的纤芯中,进行长距离传播,就会出现光与物质的相互作

用效应,能使信号波形不畸变,实现长距离传输。

当输入光增强时,就会获得相干的感应散射光。应用感应喇曼散射光的设

备有喇曼光纤激光器,可供作分光测量电源和光纤色散测试用电源。另外,感

应喇曼散射,在光纤的长距离通信中,正在研讨作为光放大器的应用。

二十一 偏心光纤

标准光纤的纤芯是设置在包层中心的,纤芯与包层的截面形状为同心圆型。

但因用途不同,也有将纤芯位置和纤芯形状、包层形状,作成不同状态或将包

层穿孔形成异型结构的。相对于标准光纤,称这些光纤叫异型光纤。

偏心光纤(Excentric Core Fiber),它是异型光纤的一种。其纤芯设置

在偏离中心且接近包层外线的偏心位置。由于纤芯靠近外表,部分光场会溢出

包层传播(称此为渐消彼,Evanescent Wave)。

因此,当光纤表面附着物质时,因物质的光学性质在光纤中传播的光波受

到影响。如果附着物质的折射率较光纤高时,光波则往光纤外辐射。若附着物

质的折射率低于光纤折射率时,光波不能往外辐射,却会受到物质吸收光波的

损耗。利用这一现象,就可检测有无附着物质以及折射率的变化。

偏心光纤(ECF)主要用作检测物质的光纤敏感器。与光时域反射计(OTDR)

的测试法组合一起,还可作分布敏感器用。

二十二 发光光纤

采用含有荧光物质制造的光纤。它是在受到辐射线、紫外线等光波照射时,

产生的荧光一部分,可经光纤闭合进行传输的光纤。

发光光纤(Luminescent Fiber)可以用于检测辐射线和紫外线,以及进

行波长变换,或用作温度敏感器、化学敏感器。在辐射线的检测中也称作闪光

光纤(Scintillation Fiber)。

发光光纤从荧光材料和掺杂的角度上,正在开发着塑料光纤。

二十三 多芯光纤

通常的光纤是由一个纤芯区和围绕它的包层区构成的。但多芯光纤(Multi

Core Fiber)却是一个共同的包层区中存在多个纤芯的。由于纤芯的相互接近

程度,可有两种功能。

其一是纤芯间隔大,即不产生光耦会的结构。这种光纤,由于能提高传输

线路的单位面积的集成密度。在光通信中,可以作成具有多个纤芯的带状光缆,

而在非通信领域,作为光纤传像束,有将纤芯作成成千上万个的。

其二是使纤芯之间的距离靠近,能产生光波耦合作用。利用此原理正在开

发双纤芯的敏感器或光回路器件。

二十四 空心光纤

将光纤作成空心,形成圆筒状空间,用于光传输的光纤,称作空心光纤

(Hollow Fiber)。

空心光纤主要用于能量传送,可供X射线、紫外线和远红外线光能传输。空

心光纤结构有两种:一是将玻璃作成圆筒状,其纤芯与包层原理与阶跃型相同。

利用光在空气与玻璃之间的全反射传播。由于,光的大部分可在无损耗的空气

中传播,具有一定距离的传播功能。二是使圆筒内面的反射率接近1,以减少反

射损耗。为了提高反射率,有在简内设置电介质,使工作波长段损耗减少的。

例如可以作到波长10.6pm损耗达几dB/m的。

参考资料:

/article/show/497.html

接入网技术的目录

第1章 网络演进与法规制约

1.1什么是接入网

1.2竞争激烈的接入网

1.3接入网发展简史

1.4迎接接入网的大发展

思考题

第2章 接入网体系结构

2.1引言

2.2电信接入网总体标准——G.902

2.2.1G.902概述

2.2.2接入网的基本定义

2.2.3接入网的结构与定界

2.2.4接入网的接口

2.2.5管理、控制和操作

2.2.6G.902小结

2.3IP接入网总体标准——Y.1231

2.3.1ITU?Y系列建议与GII

2.3.2IP接入网概述

2.3.3IP接入网定义

2.3.4IP接入网的地位

2.3.5IP接入网参考模型

2.3.6IP接入网的接入类型

2.3.7IP接入网中的典型模型

2.3.8驻地网

2.3.9Y.1231与G.902的比较

2.4接入网的功能模型

2.5宽带接入技术

2.5.1什么是宽带接入技术

2.5.2宽带接入技术概览

2.5.3运营商对宽带技术的偏爱

2.6用户接入管理

2.7小结和参考资料

2.7.1小结

2.7.2推荐资料

思考题

第3章 以太网接入技术

3.1概述

3.2以太网的技术发展

3.2.1以太网的诞生

3.2.2以太网标准的演变

3.2.3物理层的发展

3.2.4帧结构的改进

3.2.5交换式以太网

3.3以太网的标准

3.3.1已经合并的物理层标准

3.3.2已经合并的其他标准

3.3.3现行标准

3.4以太网的物理层

3.4.1物理层模型

3.4.2铜缆接口

3.4.3以太接入网

3.5以太网的MAC层

3.5.1共享信道上的MAC协议

3.5.2CSMA/CD协议概要

3.5.3全双工以太网与MAC协议

3.5.4以太帧格式

3.5.5应用中的协议栈

3.5.6几点结论

3.6以太网接入的相关技术

3.6.1以太网远端馈电

3.6.2接入控制

3.6.3用户间的隔离

3.7典型应用

3.8小结和推荐资料

3.8.1小结

3.8.2推荐资料

思考题

第4章 光纤接入技术

4.1引言

4.2光纤在接入网中的延伸——FTTx

4.3光接入网基础知识

4.3.1光纤的传输性能

4.3.2光接入网的基本结构

4.3.3光接入网的分类

4.3.4光接入网的传输技术

4.4无源光网络——PON

4.4.1无源光网络的背景及发展

4.4.2无源光网络的基本概念

4.4.3无源光网络的系统结构

4.4.4无源光网络的拓扑结构

4.5基于ATM的无源光网络——APON

4.5.1APON简介

4.5.2APON的系统结构

4.5.3APON的协议模型

4.5.4APON的技术要点

4.5.5APON的应用

4.5.6APON的延续——GPON

4.6基于Ethernet的无源光网络——EPON

4.6.1EPON的发展背景

4.6.2EPON的系统结构

4.6.3EPON的协议模型

4.6.4EPON的技术难点

4.6.5EPON的特点

4.7小结和推荐资料

4.7.1小结

4.7.2推荐资料

思考题

第5章 电话铜线接入技术

5.1引言

5.2电话铜线的传输性能

5.2.1什么是电话铜线

5.2.2用户接入段上技术的演进

5.2.3电话铜线的传输性能

5.3拨号接入技术

5.3.1话带modem拨号接入

5.3.2ISDN拨号接入

5.4xDSL的体系结构

5.4.1xDSL的类型

5.4.2接入结构

5.4.3调制技术

5.4.4转移模式

5.5ADSL

5.5.1ADSL的技术标准与发展

5.5.2ADSL的系统参考模型

5.5.3ADSL的技术要点

5.5.4ADSL.Lite

5.5.5ADSL的应用

5.6新一代的DSL

5.6.1ADSL2和ADSL2+

5.6.2VDSL

5.7xDSL的转移模式

5.7.1STM模式

5.7.2ATM模式

5.7.3PTM模式

5.8小结和推荐资料

5.8.1小结

5.8.2推荐资料

思考题

第6章 HFC接入技术

6.1引言

6.2CATV网络

6.3HFC网络

6.3.1HFC网络系统结构

6.3.2HFC频谱划分

6.3.3HFC面临的技术难点和问题

6.4CM系统原理

6.4.1CM系统组成

6.4.2CM操作要点

6.4.3CM协议模型

6.5CM技术要点

6.5.1物理层技术要点

6.5.2MAC层技术要点

6.6CM标准的演进

6.6.1CM的标准化

6.6.2IEEE 802.14标准

6.6.3DOCSIS标准

6.7小结和推荐资料

6.7.1小结

6.7.2推荐资料

思考题

第7章 宽带无线接入概论

7.1概述

7.2无线数据网络的发展史

7.3WLAN接入技术

7.4WMAN接入技术

7.5WWAN接入技术

7.6卫星接入技术

7.7WPAN接入技术

7.8无线接入技术的竞争与共存

思考题

第8章 无线局域接入技术

8.1无线局域网的发展

8.2WLAN概述

8.2.1无线数据传输的环境

8.2.2IEEE 802.11标准概要

8.2.3WLAN组网方式

8.2.4802.11的层次模型

8.2.5MAC层帧格式及类型

8.2.6移动与关联

8.3CSMA/CA协议

8.3.1基本原理

8.3.2冲突避免(CA)——RTS/CTS机制

8.3.3单帧等待应答

8.3.4分段重装与帧猝发

8.3.5信道占用预测

8.4WLAN物理层及扩展协议

8.4.1802.11物理层

8.4.2802.11b

8.4.3802.11a

8.4.4802.11g

8.5WLAN安全技术

8.5.1开放式系统认证

8.5.2共享密钥认证与WEP

8.5.3WPA与TKIP

8.5.4802.11i 、WPA2与AES

8.5.5WAPI

8.5.6小结

8.6无线局域网的应用

8.6.1Wi?Fi 802.11产品的兼容性认证

8.6.2典型应用

8.6.3无线局域网的接入应用

8.7小结和推荐资料

8.7.1小结

8.7.2推荐资料

思考题

第9章 无线城域接入技术

9.1引言

9.2固定无线接入网概述

9.2.1固定无线接入的概念

9.2.2固定无线接入的基本结构

9.3早期技术LMDS

9.3.1LMDS的系统结构

9.3.2LMDS技术的特点与业务

9.3.3LMDS的应用

9.4IEEE 802.16标准总体概要

9.4.1标准及其演进

9.4.2系统结构

9.4.3业务及QoS

9.4.4协议模型

9.5IEEE 802.16的MAC层

9.5.1MAC层的主要技术特征

9.5.2CS

9.5.3MAC CPS

9.5.4MAC安全子层

9.6IEEE 802.16的物理层

9.6.1物理层技术要点

9.6.22GHz~11GHz频段的增强技术

9.7小结和推荐资料

9.7.1小结

9.7.2推荐资料

思考题

第10章 无线广域接入技术

10.1引言

10.2无线广域接入体系

10.2.1无线广域接入的概念

10.2.2无线广域接入的类型

10.2.3无线广域数据业务

10.3陆地广域无线数据通信系统

10.3.1移动通信网的发展概况

10.3.2陆地无线广域数据通信系统的组成

10.4陆地无线广域接入技术

10.4.1CDPD技术

10.4.2GPRS技术

10.4.3CDMA2000?1X

10.4.43G技术

10.5小结和推荐资料

10.5.1小结

10.5.2推荐资料

思考题

第11章 用户接入管理体系

11.1概述

11.2接入管理功能

11.2.1AAA管理功能

11.2.2QoS管理

11.2.3安全管理

11.2.4AAA功能的发展

11.3接入管理系统的发展

11.3.1电信运营商的接入管理系统

11.3.2宽带运营商的接入管理系统

11.4接入管理系统结构

11.5接入管理基本协议

11.6小结

思考题

第12章 用户接入管理协议

12.1引言

12.2接入链路协议

12.2.1PPP协议

12.2.2PPPoE协议

12.3接入认证/控制协议

12.3.1PAP协议

12.3.2CHAP协议

12.3.3EAP协议

12.3.4802.1X协议

12.4接入管理协议

12.4.1接入管理协议的发展

12.4.2RADIUS协议模型

12.4.3RADIUS报文格式

12.4.4RADIUS报文类型

12.4.5RADIUS协议操作

12.4.6管理属性

12.4.7Diameter协议概述

12.5小结和推荐资料

12.5.1小结

12.5.2推荐资料

思考题

第13章 用户接入管理应用

13.1引言

13.2拨号用户的接入管理

13.3ADSL用户的接入管理

13.4以太网用户的接入管理

13.5WLAN用户的接入管理

13.6小结和推荐资料

13.6.1小结

13.6.2推荐资料

思考题

附录 缩略语

计算机网路的分类?

在当今社会,计算机网路技术的应用无处不在,各行各业都能够看到计算机网路技术的影子,这充分说明了计算机网路技术对于推动社会发展的重要作用和积极意义。下面是我跟大家分享的是,欢迎大家来阅读学习~

 

1.按地理范围分类

计算机网路常见的分类依据是网路覆盖的地理范围,按照这种分类方法,可将计算机网路分为区域网、广域网和都会网路三类。

区域网Local Area Network简称LAN,它是连线近距离计算机的网路,覆盖范围从几米到数公里。例如办公室或实验室的网、同一建筑物内的网及校园网等。

广域网Wide Area Network简称WAN,其覆盖的地理范围从几十公里到几千公里,覆盖一个国家、地区或横跨几个洲,形成国际性的远端网路。例如我国的公用数字资料网China DDN、电话交换网PSDN等。

都会网路Metropolitan Area Network简称MAN,它是介于广域网和区域网之间的一种高速网路,覆盖范围为几十公里,大约是一个城市的规模。

在网路技术不断更新的今天,一种用网路互连装置将各种型别的广域网、都会网路和区域网互连起来,形成了称为网际网路的网中网。网际网路的出现,使计算机网路从区域性到全国进而将全世界连成一片,这就是Internet网。

Internet中文名为因特网、国际互连网,它是世界上发展速度最快、应用最广泛和最大的公共计算机资讯网路系统,它提供了数万种服务,被世界各国计算机资讯界称为未来资讯高速公路的雏形。

2.按拓扑结构分类

拓扑结构就是网路的物理连线形式。如果不考虑实际网路的地理位置,把网路中的计算机看作一个节点,把通讯线路看作一根连线,这就抽象出计算机网路的拓扑结构。区域网的拓扑结构主要有星型、汇流排型和环型三种,如图7-1、7-2、7-3所示。

图7-1 星型结构 图7-2 汇流排型结构 图7-3 环型结构

1星型拓扑结构

这种结构以一台装置作为中央节点,其他外围节点都单独连线在中央节点上。各外围节点之间不能直接通讯,必须通过中央节点进行通讯,如图7-1所示。中央节点可以是档案伺服器或专门的接线装置,负责接收某个外围节点的资讯,再转发给另外一个外围节点。这种结构的优点是结构简单、服务方便、建网容易、故障诊断与隔离比较简便、便于管理。缺点是需要的电缆长、安装费用多;网路执行依赖于中央节点,因而可靠性低;若要增加新的节点,就必须增加中央节点的连线,扩充比较困难。

星型拓扑结构广泛应用于网路中智慧集中于中央节点的场合。在目前传统的资料通讯中,该拓扑结构仍占支配地位。

2汇流排型拓扑结构

这种结构所有节点都直接连到一条主干电缆上,这条主干电缆就称为汇流排。该类结构没有关键性节点,任何一个节点都可以通过主干电缆与连线到总线上的所有节点通讯,如图7-2所示。这种结构的优点是电缆长度短,布线容易;结构简单,可靠性高;增加新节点时,只需在汇流排的任何点接入,易于扩充。汇流排结构的缺点是故障检测需要在各个节点进行,故障诊断困难,隔离也困难,尤其是汇流排故障会引起整个网路的瘫痪。

3环型拓扑结构

这种结构各节点形成闭合的环,资讯在环中作单向流动,可实现环上任意两节点间的通讯,如图7-3所示。环形结构的优点是电缆长度短、成本低。该结构的缺点是某一节点出现故障会引起全网故障,且故障诊断涉及到每一个节点,故障诊断困难;若要扩充环的配置,就需要关掉部分已接入网中的节点,重新配置困难。

4混合结构

混合结构是将多种拓扑结构的区域网连在一起而形成的,如图7-4所示。混合拓扑结构的网路兼并了不同拓扑结构的优点。

图7-4 混合型结构

一般来说,拓扑结构会影响传输介质的选择和控制方法的确定,因而会影响网上结点的执行速度和网路软、硬体介面的复杂程度。网路的拓扑结构和介质访问控制方法是影响网路效能的最重要因素,因此应根据实际情况选择最合适的拓扑结构,选用相应的网路介面卡和传输介质,确保组建的网路具有较高的效能。

3.按传榆介质分类

传输介质就是指用于网路连线的通讯线路。目前常用的传输介质有同轴电缆、双绞线、光纤、卫星、微波等有线或无线传输介质,相应地可将网路分为同轴电缆网、双绞线网、光纤网、卫星网和无线网。

4.按频宽速率分类

频宽速率指的是“网路频宽”和“传输速率”两个概念。传输速率是指每秒钟传送的二进位制位数,通常使用的计量单位为b/s、kb/s、Mb/s。按网路频宽可以分为基带网窄带网和宽频网;按传输速率可以分为低速网、中速网和高速网。一般来讲,高速网是宽频网,低速网是窄带网。

5.按通讯协议分类

通讯协议是指网路中的计算机进行通讯所共同遵守的规则或约定。在不同的计算机网路中采用不同的通讯协议。在区域网中,乙太网采用CSMA协议,令牌环网采用令牌环协议,广域网中的报文分组交换网采用X.25协议,Internet网采用TCP/IP协议,采用不同协议的网路可以称为“×××协议网”。

在建设宽带网络的两个关键技术中:什么是骨干网技术和接入网技术

骨干网技术:一种在主要连接节点之间承载快速通信流量的通信传输网络,提供了不同子网间信息交换路径,采用混合型拓扑结构,网络间设备采用任意点对任意点连接方式。 接入网技术:接入网技术分类比较繁杂,从接入业务的角度看,可简单地分为适用于窄带业务的接入网技术和适用于宽带业务的接入网技术。适用于窄带业务的接入网技术主要有:有源光网络DLC 、无源光网络PON 、固定无线接入WLL 等,这些技术是根据不同的建设需要发展起来的,其中,DLC 适用于用户比较密集的地区,PON 适用于用户比较分散的地区,WLL 适用于边远地区、不宜铺设光缆的地区、城市新居民区应急通话和小范围有移动要求的用户。窄带接入网技术比较成熟。宽带接入网技术是随着宽带业务的需求逐渐发展成熟的。主要有基于双绞线传输的接入网技术、基于光传输的接入网技术、基于同轴电缆传输的接入网技术和基于无线传输的接入网技术。

核心网承载网接入网 && 核心层汇聚层接入层

最近在看LTE网络,看的时候对核心网承载网接入网 && 核心层汇聚层接入层这两种分类方法产生了一些疑问。经过和我的室友的讨论(手动@吃汉堡的xx),最终得出了结果。

首先我们看一张图,图1 :

在移动通信网中,我们把整个网络分为三部分:接入网 (解决的是如何使设备接入到网络中,将手机与基站通过空中接口Uu连接), 承载网 (负责承载数据传输,就是光纤传输的那一块), 核心网 (管理中枢,在电信机房中负责对你进行位置管理、更新、鉴权、连接这些管理的大型路由器,电信级路由器)。如果说核心网是人的大脑,接入网是四肢,那么承载网就是连接大脑和四肢的神经网络,负责传递信息和指令。

有关承载网的说明:什么是承载网?顾名思义, 承载网就是专门负责承载数据传输的网络 。当基站完成和手机的连接之后,再打通基站和中心机房之间的连接,靠的就是承载网。这个 负责承载数据、汇聚数据的网络,就是承载网 。如果说接入网是通信网络的四肢,那么,承载网就是通信网络的动脉。 承载网主要是传输数据 。以前基本是使用电缆,后来,因为数据上网业务的激增,流量变得很大,所以,开始使用网线、光纤光缆进行传输。随着5G时代到来,终端速率激增,承载网作为管道,当然也要能够承受住巨大的流量。承载网将数据从接入网发送到核心网,也就是整个通信网络的大脑。

这个我要澄清一个误区:一直以来,很多人认为承载网只是连接接入网和核心网的,就像本文图2画的那样:其实是不严谨的,那样画只是为了方便。准确来说,承载网也包括接入网内部连接的部分,还有核心网内部连接的部分。所以,更准确的逻辑关系画法,应该是这样:

这才能真正体现 “承载” 的奥义(汉语词典:承载--承受支撑物体),就好像承载网承受支撑着接入网核心网。

承载网结构如下:

从整体上来看,除了前传之外,承载网就是主要由城域网和骨干网共同组成的。而 城域网,又分为接入层、汇聚层和核心层。

所有接入网过来的数据,最终通过逐层汇聚,到达顶层骨干网。(骨干网分为一干(省际),二干(省内),把城市之间连接起来的网叫骨干网(是承载网的概念,而不是核心网))

对网络而言,我们对其结构模型可以进行分层次,如分为核心层、汇聚层和接入层 。在百度百科中搜索承载网,我们可以看到它的层次结构:?

我理解的是承载网与核心网对接的部分为核心层,与接入网对接的为接入层。(接入网不会这么分层,因为只涉及到基站,核心网同样也不会)。

所以,两种分类是不一样的,得从分类的角度去看。 核心网承载网接入网是把一个大的移动通信网络分成3部分,而核心层汇聚层接入层是将一个网络分层的概念(类比计算机网络)。

参考文章:[来自鲜枣课堂微信公众号]( /s?__biz=MzI1NTA0MDUyMA==&mid=2456664687&idx=1&sn=577432464dbb878a0b6b650c0116aef7&chksm=fda51708cad29e1e6890bdbb2043406b450c314475a368357cd850b6bbec02e47edb0aa88bb3&mpshare=1&scene=23&srcid=&sharer_sharetime=1564450469662&sharer_shareid=e68a9497384472699159a9f3e027ff80#rd )

核心网,数据网,传输网,接入网,承载网,交换网按什么来划分?

核心网,数据网,传输网,接入网,承载网,交换网可以按业务角度和传输角度这两个角度来划分。

其中,核心网是移动通信网络的概念,按业务层的角度划分,它是将接入网与其他接入网连接在一起的网络;传输网是是通信网络的基础,它为整个通信网络上所承载的业务提供传输通道和平台。

而数据网则是承载在传输网上的业务网,数据网是由数据终端、传输、交换、处理等设备组成的体系,它承载众多的业务和应用系统。

承载网按传输的角度来说,它是用于保证通信基础网和业务网正常运行,而交换网从业务角度上来说是一个综合业务数字网。

扩展资料:

从业务角度划分,业务网=核心网+接入网;从传输角度划分,通信网=骨干网+接入网。其中,核心网是业务层的角度划分,将接入网与其他接入网连接在一起的网络。

而骨干网则是按传输的角度划分,是城市之间的连接网络。同时,骨干网又是承载网的概念。几台计算机连接起来,互相可以看到其他人的文件,这叫局域网;而整个城市的计算机都连接起来,就是城域网,把城市之间连接起来的网就叫骨干网。

百度百科-核心网

百度百科-接入网

百度百科-骨干网

传统电信网的分类

电信网由核心网、接入网(AN)和用户驻地网(CPN)三大部分组成。核心网和接入网属于公共电信网,CPN为用户自有通信网,传统CPN是单用户。接入网的一侧是核心网,核心网主要由各类业务网构成,另一侧是用户。接入网起到承上启下的作用,通过接入网将核心网的业务提供给用户。接入网是一种透明传输体系,本身不提供业务,由用户终端与核心网配合提供各类业务。

光纤接入详细资料大全(接入网技术的目录)

今天关于“接入网的分类”的讨论就到这里了。希望通过今天的讲解,您能对这个主题有更深入的理解。如果您有任何问题或需要进一步的信息,请随时告诉我。我将竭诚为您服务。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人,并不代表关注常识网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。

联系我们

在线咨询:点击这里给我发消息

微信号:CHWK6868

工作日:9:30-18:30,节假日休息