集合里面的符号及其含义有哪些?(数学集合的一些符号的含义和意思)
集合论是数学中的一个重要分支,它研究的是集合这一基本概念以及与之相关的性质和运算。在集合论中,有许多符号和术语用来表示集合及其关系。以下是一些常见的集合符号及其...
在接下来的时间里,我将尽力回答大家关于集合的含义与表示的问题,希望我的解答能够给大家带来一些思考。关于集合的含义与表示的话题,我们开始讲解吧。
集合里面的符号及其含义有哪些?
集合论是数学中的一个重要分支,它研究的是集合这一基本概念以及与之相关的性质和运算。在集合论中,有许多符号和术语用来表示集合及其关系。以下是一些常见的集合符号及其含义:
1.集合:用大写字母表示,如A、B、C等。
2.元素:集合中的每一个对象称为元素,用小写字母表示,如a、b、c等。
3.空集:不包含任何元素的集合,用符号_表示。
4.全集:包含所有可能元素的集合,通常用符号U或R表示。
5.子集:一个集合的所有元素都是另一个集合的元素,则前者称为后者的子集,用符号_表示。
6.真子集:一个集合的所有元素都是另一个集合的元素,但它们本身不是相同的集合,则前者称为后者的真子集,用符号_表示。
7.并集:两个或多个集合中所有元素的集合,用符号∪表示。
8.交集:两个或多个集合中共有的元素的集合,用符号∩表示。
9.补集:一个集合中不属于另一个集合的所有元素的集合,用符号-表示。
10.笛卡尔积:两个集合中所有可能的有序对组成的集合,用符号×表示。
11.幂集:一个集合的所有子集组成的集合,用符号P(A)表示。
12.无限集:包含无穷多个元素的集合,用符号∞表示。
介绍一下高一数学 集合的概念 (知识点)
高一数学必修1各章知识点总结
第一章 集合与函数概念
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性如:世界上最高的山
(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
1) 列举法:{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同时 B?A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
高一数学集合的含义与表示教案设计
教学目的 :要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.
教学重难点:
1、元素与集合间的关系
2、集合的表示法
教学过程:
一、 集合的概念
实例引入:
⑴ 1~20以内的所有质数;
⑵ 我国从1991~2003的13年内所发射的所有人造卫星;
⑶ 金星汽车厂2003年生产的所有汽车;
⑷ 2004年1月1日之前与我国建立外交关系的所有国家;
⑸ 所有的正方形;
⑹ 黄图盛中学2004年9月入学的高一学生全体.
结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.
二、 集合元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.
(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写
练习:判断下列各组对象能否构成一个集合
⑴ 2,3,4 ⑵ (2,3),(3,4) ⑶ 三角形
⑷ 2,4,6,8,… ⑸ 1,2,(1,2),{1,2}
⑹我国的小河流 ⑺方程x2+4=0的所有实数解
⑻好心的人 ⑼著名的数学家 ⑽方程x2+2x+1=0的解
三 、 集合相等
构成两个集合的元素一样,就称这两个集合相等
四、 集合元素与集合的关系
集合元素与集合的关系用“属于”和“不属于”表示:
(1)如果a是集合A的元素,就说a属于A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于A,记作a∈A
五、常用数集及其记法
非负整数集(或自然数集),记作N;
除0的非负整数集,也称正整数集,记作N*或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R.
练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是( )
A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形
(2)说出集合{1,2}与集合{x=1,y=2}的异同点?
六、集合的表示方式
(1)列举法:把集合中的元素一一列举出来,写在大括号内;
(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)
例 1、 用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成。
例 2、 试分别用列举法和描述法表示下列集合:
(1)由大于10小于20的的所有整数组成的集合;
(2)方程x2-2=2的所有实数根组成的集合.
注意:(1)描述法表示集合应注意集合的代表元素
(2)只要不引起误解集合的代表元素也可省略
七、小结
集合的概念、表示;集合元素与集合间的关系;常用数集的记法.
数学集合的一些符号的含义和意思
∪:并集。比如,A∪B表示集合A和集合B中所有元素组成的集合
∩:交集。比如,A∩B表示既在集合A中又在集合B中的所有元素组成的集合
∈:属于。比如,a∈A表示元素a属于集合A
{ }:这是集合的一种表示方法,比如集合A={1,7,6}表示集合A中有1、7、6这三个元素
∩躺着的表示前一个集合包含于后一个集合,即前一个集合中的元素都在后一个集合里
∩躺着加≠表示表示前一个集合包含于后一个集合,而且这两个集合不相等
好了,关于“集合的含义与表示”的讨论到此结束。希望大家能够更深入地了解“集合的含义与表示”,并从我的解答中获得一些启示。