什么是活化能 活化分子 ,这两个怎样理解?(活化能的概念)
活化能是指化学反应中,由反应物分子到达活化分子所需的最小能量 以酶和底物为例,二者自由状态下的势能与二者相结合形成的活化分子的势能之差就是反应所需的活化能,因此...
谢谢大家对活化能的概念是什么问题集合的提问。作为一个对此领域感兴趣的人,我期待着和大家分享我的见解和解答各个问题,希望能对大家有所帮助。
什么是活化能 活化分子 ,这两个怎样理解?
活化能是指化学反应中,由反应物分子到达活化分子所需的最小能量 以酶和底物为例,二者自由状态下的势能与二者相结合形成的活化分子的势能之差就是反应所需的活化能,因此不是说活化能存在于细胞中,而是细胞中的某些能量为反应提供了所需的活化能。
活化分子,在相同温度下,分子的能量并不完全相同,有些分子的能量高于分子的平均能量,称为活化分子。能够发生有效碰撞的一定是活化分子,但是活化分子不一定发生有效碰撞。不是反应物分子之间的任何一次直接作用都能发生反应,只有那些能量相当高的分子之间的直接作用才能发生反应。在一定温度下,某反应具有的活化分子数由该反应的活化能Ea决定。
活化能简介
活化能简介
目录1拼音2注解1拼音huóhuànéng
2注解
对元反应来说,阿伦尼乌斯公式中的活化能(Ea)是活化分子的平均能量跟所有分子的平均能量的差。碰撞理论认为,分子碰撞的剧烈程度不取决于A、B两个分子的总移动能,而取决于它们在质心连线方向上的相对移动能。只有这个能量超过某一数值(叫临界能εc)时反应才能发生,碰撞理论就把εc×NA=Ec叫做反应活化能(NA是阿佛加德罗常数)。关于活化能定义目前还没有完全统一的提法,随着反应速率理论的发展,人们对这概念的理解在不断深化。反应活化能的大小由反应物分子性质所决定,也就跟分子的内部结构密切相关。不同反应有不同的活化能(Ea),Ea越低,反应进行得越快。在通常反应温度下,大多数反应的活化能在40~400kJ/mol范围内。一般的中和反应Ea<40kJ/mol,所以中和反应速率很大,用通常的方法难以测定。活化能的实验测定常用阿伦尼乌斯公式的不定积分形式求得
只要测得几个不同温度下的反应速率常数k,以lnk对1/T作图,得到一条直线,由它的斜率Ea/R就可求得活化能Ea(斜率)×R(R是气体常数)。
免责声明:本文内容来源于网络,不保证100%正确,涉及到药方及用法用量的问题,不保证正确,仅供参考。由此造成的问题,本站概不负责。
活化能和键能的区别
活化能和键能的区别有:
1、概念不一样:活化能是指分子从常态转变为容易发生化学反应的活跃状态所需要的能量。键能是从能量因素衡量化学键强弱的物理量。
2、计算方式不一样:键能是表征化学键强度的物理量,可以用键断裂时所需的能量大小来衡量。活化能的计算可用阿伦尼乌斯方程求解。阿伦尼乌斯方程反应了化学反应速率常数K随温度变化的关系。
3、影响因素不一样:活化能的影响因素主要有浓度、压强、温度、催化剂等。键能的大小与许多因素有关,其中主要的因素是被键连接在一起的原子间电负性差异。
参考资料:
百度百科-活化能
百度百科-键能
活化能的概念
反应活化能是指分子从常态转变为容易发生化学反应的活跃状态所需要的能量。 对基元反应,反应活化能即基元反应的活化能。对复杂的非基元反应,反应活化能是总包反应的表观活化能,即各基元反应活化能的代数和。
活化能历史由来
萌芽
活化能是一个化学名词,又被称为阈能。这一名词是由阿伦尼乌斯(Arrhenius)在1889年引入,用来定义一个化学反应的发生所需要克服的能量障碍。活化能可以用于表示一个化学反应发生所需要的最小能量。反应的活化能通常表示为Ea,单位是千焦耳每摩尔(kJ/mol)。
活化能表示势垒(有时称为能垒)的高度。活化能的大小可以反映化学反应发生的难易程度。
提出
在Arrhenius提出活化能概念之前,人们对溶液反应曾总结出这样一个规则:溶液温度每升高10℃,反应速率将成倍增加。并且,在1878年,由英国科学家Hood最早通过实验归纳出一经验关系式:
式中B、C是经验常数。
随后,范特霍夫于1884年在讨论温度对化学反应平衡常数影响的基础上,首先对上式作出了初步的理论说明。他从热力学严格地导出了描述温度与化学平衡常数K之间关系的方程式,对于溶液反应Kc可写成:
并导出了温度与反应速率常数之间的关系式:
不过他没有给出A的物理意义以及确定的I方法,因此当时没能引起人们的重视
1889年,Arrhenius 通过大量实验与理论的论证,揭示了反应速率与温度的关系Arrhenius经验公式,其形式如下[1] :
指数式
对数式
微分式
完善
阿伦尼乌斯提出了活化能的概念,但对活化能的解释不够明确,特别是把活化能看作是与温度无关的常数,这与许多实验事实不符。 20世纪20年代,科学家托尔曼(Tolman)运用统计热力学来讨论化学反应速率与温度的关系,并于1925年推导出下面的反应式:
式中:为活化分子的平均摩尔能量,为反应物分子的平均摩尔能量,即活化能是活化分子的平均能量与反应物分子的平均能量之差。
很多反应若按阿仑尼乌斯的经验公式,以lnk对1/T作图,常得到的图形是一根曲线,而不是直线,这表明活化能并不是一个常数。事实上,<E*>和<E>都与温度有关, 因此Ea也应是温度的函数,但在有些情况下二者的温度效应可能彼此抵消,此时活化能则与温度无关。 托尔曼所推导出的公式较好地弥补了阿伦尼乌斯理论的一些不足与缺陷,不再将活化能与温度相互隔离开来,而是提出了一个更为普遍与更具说服力的一种解释。
基本定义
活化能是指化学反应中,由反应物分子到达活化分子所需的最小能量。以酶和底物为例,二者自由状态下的势能与二者相结合形成的活化分子的势能之差就是反应所需的活化能,因此不是说活化能存在于细胞中,而是细胞中的某些能量为反应提供了所需的活化能。
事实上,对基元反应,Ea可以赋予较明确的物理意义。分子相互作用的首要条件是它们必须“接触”,虽然分子彼此碰撞的频率很高,但并不是所有的碰撞都是有效的,只有少数能量较高的分子碰撞后才能起作用,Ea表征了反应分子能发生有效碰撞的能量要求。而对非基元反应,Ea就没有明确的物理定义了,它实际上是组成该总包反应的各种基元反应活化能的特定组合。在复杂反应中,Ea称为该总包反应的表观活化能(apparent activition energy),A称为表观指数前因子(apparent pre-exponetial factor)[1] 。
化学反应速率与其活化能的大小密切相关,活化能越低,反应速率越快,因此降低活化能会有效地促进反应的进行。酶通过降低活化能(实际上是通过改变反应途径的方式降低活化能)来促进一些原本很慢的生化反应得以快速进行(或使一些原本很快的生化反应较慢进行)。影响反应速率的因素分外因与内因:内因主要是参加反应物质的性质;在同一反应中,影响因素是外因,即外界条件,主要有浓度、压强、温度、催化剂等。
化学反应的活化能
实验证明,只有发生碰撞的分子的能量等于或超过某一定的能量Ec(可称为临界能)时,才可能发生有效碰撞。具有能量大于或等于Ec的分子称为活化分子。
图2 不同温度下的分子能量分布图
不同的反应具有不同的活化能。反应的活化能越低,则在指定温度下活化分子数越多,反应就越快。
不同温度下分子能量分布是不同的。图2中是不同温度下分子的能量分布示意图 。当温度升高时,气体分子的运动速率增大,不仅使气体分子在单位时间内碰撞的次数增加,更重要的是由于气体分子能量增加,使活化分子百分数增大。图中曲线t1表示在t1温度下的分子能量分布,曲线t2表示在t2温度下的分子能量分布(t2>t1)。温度为t1时活化分子的多少可由面积A1反映出来;温度为t2时,活化分子的多少可由面积A1+A2反映出来。从图中可以看到,升高温度,可以使活化分子百分数增大,从而使反应速率增大。
非常高兴能与大家分享这些有关“活化能的概念是什么”的信息。在今天的讨论中,我希望能帮助大家更全面地了解这个主题。感谢大家的参与和聆听,希望这些信息能对大家有所帮助。