1. 关注常识网首页
  2. 科普知识

黄金三角形的资料(黄金三角形的特征)

黄金三角形所谓黄金三角形是一个等腰三角形,其底与腰的长度比为黄金比值;对应的还有:黄金矩形之类,正是因为其腰与边的比为(√5-1)/2.约为0.618而获得了此...

希望我能够为您提供一些与什么是黄金三角形相关的信息和建议。如果您有任何疑问或需要更深入的解释,请告诉我。

黄金三角形的资料(黄金三角形的特征)

黄金三角形的资料

黄金三角形所谓黄金三角形是一个等腰三角形,其底与腰的长度比为黄金比值;对应的还有:黄金矩形之类,正是因为其腰与边的比为(√5-1)/2.约为0.618而获得了此名称。

作法

1、作正方形ABCD

2、取AB的中点N

3、以点N为圆心NC为半径作圆交AB延长线于E

4、以B为圆心BE长为半径作⊙B

5、以A为圆心AB长为半径作⊙A交⊙B于M

则△ABM为黄金三角形。

黄金三角形的特征

黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°.它的腰与它的底成黄金比.当底角被平分时,角平分线分对边也成黄金比,并形成两个较小的等腰三角形.这两三角形之一相似于原三角形,而另一三角形可用于产生螺旋形曲线.

勾为a,股为b=2a的直角三角形几何特征是:它是唯一一种能够由5个全等的小三角形生成其相似三角形的三角形。

把五个黄金三角形称为“小三角形”,拼成的相似黄金三角形称为“大三角形”。则命题可以理解为:五个小三角形能够不重叠又不超出地充满大三角形。要满足这种填充,必要条件之一是大三角形的每条边都可以由若干条小三角形的边相加而成。

根据定义,第一种黄金三角形是底与腰的比值为(√5-1)/2的等腰三角形,顶角为36°,底角为72°。

设小三角形的底为a,则腰为b=(√5-1)a/2,因为大三角形的面积为小三角形的5倍。则大三角形的边长为小三角形对应边长的√5倍,即大三角形的底为A=√5 a,腰为B=√5 *(√5-1)a/2=(√5-5)a/2。

大三角形的腰B与小三角形边的关系满足:

B=2a+b

而大三角形的底A与小三角形边的关系可列举如下:

2a<A<3a

b<A<b+a

可见大三角形底边的邻近区域无法由小三角形不重叠又不超地来填充(图1)。故命题错。

另外一种黄金三角形是腰与底的比值为(√5-1)/2的等腰三角形,顶角为108°,底角为36°。

设小三角形的底为a,则腰为b=(√5-1)a/2。

同样可以证明:A=2b+a

2b<B<3b

a<B<b+a

可见大三角形腰的邻近区域无法由小三角形不重叠又不超出地填充(图2)。故命题错。

事实上,勾为a,股为b=2a的直角三角形可以满足命题要求。

显然,弦c=√a2+b2 =√5 a

大三角形的对应边:

A=√5 a=c

B=2A=2c

C=√5 *(√5a)=5a=2b+a满足上述必要条件。是否成立还要验证,结果是对的(图3)。本三角形是否唯一满足命题还不清楚。

顶角36°的黄金三角形按任意一底角的角平分线分成两个小等腰三角形,且其中一个等腰三角形的底角是另一个的2倍。顶角是108°的黄金三角形把顶角一个72°和一个36°的角,这条分线也把黄金三角形分成两个小等腰三角形,且其中一个等腰三角形的底角也是另一个的2倍。

黄金三角形的资料(黄金三角形的特征)

今天关于“什么是黄金三角形”的讨论就到这里了。希望通过今天的讲解,您能对这个主题有更深入的理解。如果您有任何问题或需要进一步的信息,请随时告诉我。我将竭诚为您服务。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人,并不代表关注常识网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。

联系我们

在线咨询:点击这里给我发消息

微信号:CHWK6868

工作日:9:30-18:30,节假日休息