1. 关注常识网首页
  2. 科普知识

求圆内角圆外角圆周角圆边角的个关系以及证明公式(请罗列出初中有关圆的所有定理,判断,公式?急!!!)

顶点在圆外的角的度数等于所截两弧度数差的一半.顶点在圆内的角的度数等于所截弧度数和的一半 证明: 如图,过C作CE//AB,交圆于E, 则有∠P=∠DC...

在这个数字化的时代,什么是圆内角和圆外角相关定理的更新速度越来越快。今天,我将和大家分享关于什么是圆内角和圆外角相关定理的今日更新,让我们一起跟上时代的步伐。

求圆内角圆外角圆周角圆边角的个关系以及证明公式(请罗列出初中有关圆的所有定理,判断,公式?急!!!)

求圆内角圆外角圆周角圆边角的个关系以及证明公式

顶点在圆外的角的度数等于所截两弧度数差的一半.顶点在圆内的角的度数等于所截弧度数和的一半

证明:

如图,过C作CE//AB,交圆于E,

则有∠P=∠DCE,弧AC=弧BE(圆中两平行弦所夹弧相等)

而∠DCE的度数等于弧DE的一半,弧DE=弧BD-弧BE=弧BD-弧AC

所以∠DCE的度数等于“弧BD-弧AC”的一半

即“顶点在圆外的角(两边与圆相交)的度数等于其所截两弧度数差的一半”

另外也可以连接BC,则∠P=∠BCD-∠B

∠BCD的度数等于弧BD的度数的一半

∠B的度数等于弧AC的度数的一半

同样得“顶点在圆外的角(两边与圆相交)的度数等于其所截两弧度数差的一半”

圆内角的证明完全类似:

过C作CE//AB,交圆于E,

则有∠APC=∠C,弧AC=弧BE(圆中两平行弦所夹弧相等)

而∠C的度数等于弧DE的一半,弧DE=弧BD+弧BE=弧BD+弧AC

所以∠APC的度数等于“弧BD+弧AC”的一半

即“顶点在圆内的角(两边与圆相交)的度数等于其所截两弧度数和的一半”

另外也可以连接BC进行证明

(圆周角定理是课本上一定有的,“圆边角”没有见过这个说法,是不是指“弦切角”?如果是,课本上也有的

供参考!JSWYC

为什么圆内角大于圆外角

同弧所对的任意圆内角大于圆外角,这是基本的定理

还是很容易明白的

就沿着外角的交点连接并穿过圆心

显然内角和外角都被分成了两个部分,并构成了三角形

而内角的每个部分都是三角形外角,等于圆外角加上某个角度

二者合一之后,当然得到同弧所对的任意圆内角大于圆外角

高中文科有关圆的定理

有好多。

一、有关圆周角和圆心角的性质和定理:

在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

二、有关外接圆和内切圆的性质和定理

①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)

④两相切圆的连心线过切点(连心线:两个圆心相连的直线)

⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

三、如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

四、圆心角的度数等于它所对的弧的度数。

五、圆周角的度数等于它所对的弧的度数的一半。

六、弦切角的度数等于它所夹的弧的度数的一半。

七、圆内角的度数等于这个角所对的弧的度数之和的一半。

八、圆外角的度数等于这个等于这个角所截两段弧的度数之差的一半。

九、有关切线的性质和定理

圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。

切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

附:〖有关圆的计算公式〗

1.圆的周长C=2πr=πd

2.圆的面积S=πr^2;

3.扇形弧长l=nπr/180

4.扇形面积S=(nπr^2)/360=lr/2(l为扇形的弧长

5.圆锥侧面积S=πrl 6.圆锥侧面展开图(扇形)的圆心角n=360r/l(r是底面半径,l是母线长)

请罗列出初中有关圆的所有定理,判断,公式?急!!!

垂径定理:垂直于弦的直径平分弦且平分弦所对的弧

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

圆的两条平行弦所夹的弧相等。

圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等

同一条弧所对的圆周角等于它所对的圆心的角的一半

同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧

半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径

三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

弦切角等于所夹弧所对的圆周角

推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

切线的性质与判定定理

(1)判定定理:过半径外端且垂直于半径的直线是切线

两个条件:过半径外端且垂直半径,二者缺一不可

即:∵MN⊥OA且MN过半径OA外端

∴MN是⊙O的切线

(2)性质定理:切线垂直于过切点的半径(如上图)

推论1:过圆心垂直于切线的直线必过切点

推论2:过切点垂直于切线的直线必过圆心

以上三个定理及推论也称二推一定理:

即:过圆心 过切点 垂直切线中知道其中两个条件推出最后一个条件

切线长定理:

从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

圆内相交弦定理及其推论:

(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等

即:在⊙O中,∵弦AB、CD相交于点P

∴PA·PB=PC·PA

(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

圆公共弦定理:连心线垂直平分公共弦

什么是内角和外角

内角是两条线段的夹角,外角是一条线段的延长线与一条线段的夹角;

外角与内角的关系:三角形内角和等于180度,一个外角大于与它不相邻的任一个内角,等于与它不相邻的两个内角和,多边形的外角和为360度,外角越多,越接近圆。

探究的一般过程是从发现问题、提出问题开始的,发现问题后,根据自己已有的知识和生活经验对问题的答案作出假设.设计探究的方案,包括选择材料、设计方法步骤等.按照探究方案进行探究,得到结果,再分析所得的结果与假设是否相符,从而得出结论.并不是所有的问题都一次探究得到正确的结论.有时,由于探究的方法不够完善,也可能得出错误的结论.因此,在得出结论后,还需要对整个探究过程进行反思.探究实验的一般方法步骤:提出问题、做出假设、制定计划、实施计划、得出结论、表达和交流.

科学探究常用的方法有观察法、实验法、调查法和资料分析法等.

观察是科学探究的一种基本方法.科学观察可以直接用肉眼,也可以借助放大镜、显微镜等仪器,或利用照相机、录像机、摄像机等工具,有时还需要测量.科学的观察要有明确的目的;观察时要全面、细致、实事求是,并及时记录下来;要有计划、要耐心;要积极思考,及时记录;要交流看法、进行讨论.实验方案的设计要紧紧围绕提出的问题和假设来进行.在研究一种条件对研究对象的影响时,所进行的除了这种条件不同外,其它条件都相同的实验,叫做对照实验.一般步骤:发现并提出问题;收集与问题相关的信息;作出假设;设计实验方案;实施实验并记录;分析实验现象;得出结论.调查是科学探究的常用方法之一.调查时首先要明确调查目的和调查对象,制订合理的调查方案.调查过程中有时因为调查的范围很大,就要选取一部分调查对象作为样本.调查过程中要如实记录.对调查的结果要进行整理和分析,有时要用数学方法进行统计.收集和分析资料也是科学探究的常用方法之一.收集资料的途径有多种.去图书管查阅书刊报纸,拜访有关人士,上网收索.其中资料的形式包括文字、、数据以及音像资料等.对获得的资料要进行整理和分析,从中寻找答案和探究线索.

初三圆的知识点

一、圆的概念

集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合;

2、圆的外部:可以看作是到定点的距离大于定长的点的集合;

3、圆的内部:可以看作是到定点的距离小于定长的点的集合

轨迹形式的概念:

1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;

(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);

3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;

4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;

5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

有关概念:

圆——到定点的距离等于定长的点的集合

圆的内部——可以看作是圆心的距离小于半径的点的集合

圆的外部——可以看作是圆心的距离大于半径的点的集合

等圆——圆心不相同,半径相等的圆;同心圆——圆心相同,半径不等的圆。

弧——圆上任意两点间的部分叫做圆弧,简称弧。按与半圆的大小关系可分为:优弧和劣弧

等弧——在同圆或等圆中,能够重合的两条弧

弦——连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。

弦心距——圆心到直线的距离

弓形——弧与所对的弦所组成得图形。

圆的内部——到圆心的距离小于半径的点的集合叫做圆的内部

圆的外部——到圆心的距离大于半径的点的集合叫做圆的外部

圆心角:顶点在圆心的角

圆周角 :顶点在圆周上,并且两边都和圆相交的角叫做圆周角。

弦切角、圆内角、圆外角及性质:

顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

顶点在圆外的角(两边与圆相交)的度数等于其所截两弧度数差的一半.

顶点在圆内的角(两边与圆相交)的度数等于其及其对顶角所截弧度数和的一半.

定理——不在同一直线上的三点确定一个圆。

相关概念及性质——三角形的外接圆 圆的内接三角形 三角形的外心

三角形的外心的性质:三角形的外心到各个顶点的距离相等。

定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

初中关于圆的所有概念及性质有哪些

1. 圆的有关概念

圆、圆心、半径、弦、直径、弧、半圆、优弧、劣弧、弦心距、等弧、等圆、同心圆、弓形、弓形的高.

说明:

(1)直径是弦,但弦不一定是直径,直径是圆中最长的弦.

(2)半圆是弧,但弧不一定是半圆.

(3)等弧只能是同圆或等圆中的弧,离开“同圆或等圆”这一条件不存在等弧.

(4)等弧的长度必定相等,但长度相等的弧未必是等弧.

2. 点和圆的位置关系

说明:点和圆的位置关系与点到圆心的距离和半径大小的数量关系是对应的,即知量位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.

3. 和圆有关的角

圆心角、圆外角

说明:这两种与圆有关的角,可以通过对比,从(1)角的顶点的位置;(2)角的两边与圆的位置关系,两个方面去把握它们.

补充:如果角的顶点在圆内,则称这样的角为圆内角,圆心角是特殊的圆内角;如果角的顶点在圆外,且角的两边都与同一个圆相交,则称这样的角为圆外角.

4. 圆的有关性质

(1)圆的确定

圆心确定圆的位置半径确定圆的大小.

不在同一直线上的三个点确定一个圆.

(2)圆的对称性

圆是轴对称图形,任何一条经过圆心的直线都是它的对称轴.

圆是中心对称图形,圆心是它的对称中心.

说明:一个圆的对称轴有无数条,对称中心只有一个,一个圆绕圆心旋转任意角度,都能够和原图形重合,即圆还具有旋转不变性.

(3)垂径定理

如果一条直线具有(1)经过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的劣弧(5)平分弦所对的优弧,这五个性质的任何两个性质,那么这条直线就具有其余三个性质,即:

垂径定理:(1)(2) (3)(4)(5)

推论1:(1)(3) (2)(4)(5)

(2)(3) (1)(4)(5)

(1)(4)(或(5)) (2)(3)(5)(或(4))

(1)(3) (2)(4)(5)是“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧”其中的弦必须是非直径的弦,假若弦是直径,那么这两条直径不一定互相垂直.

推论2:圆的两条平行弦所夹的弧相等.

说明:在解决圆的有关问题时,有以下几种常引用的辅助线:

(1)连弦的端点与圆心的半径.

(2)作弦心距

(3)连圆心和弦的中点(遇弦的中点时)

(4)连圆心和弧的中点(遇弧的中点时)

求圆内角圆外角圆周角圆边角的个关系以及证明公式(请罗列出初中有关圆的所有定理,判断,公式?急!!!)

好了,今天关于“什么是圆内角和圆外角相关定理”的话题就到这里了。希望大家能够通过我的讲解对“什么是圆内角和圆外角相关定理”有更全面、深入的了解,并且能够在今后的生活中更好地运用所学知识。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人,并不代表关注常识网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。

联系我们

在线咨询:点击这里给我发消息

微信号:CHWK6868

工作日:9:30-18:30,节假日休息