1. 关注常识网首页
  2. 教育

向量的叉乘公式是什么?(向量叉乘的公式是什么?)

公式:a × b = |a| * |b| * sinθ 叉乘又叫向量的外积、向量积。点乘和叉乘的区别:点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个...

感谢大家在这个向量叉乘公式问题集合中的积极参与。我将用专业的态度回答每个问题,并尽量给出具体的例子和实践经验,以帮助大家理解和应用相关概念。

向量的叉乘公式是什么?(向量叉乘的公式是什么?)

向量的叉乘公式是什么?

公式:a × b = |a| * |b| * sinθ 叉乘又叫向量的外积、向量积。

点乘和叉乘的区别:

点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。

向量a · 向量b=|a||b|cos<a,b>。

在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。

相关信息:

“正确”的向量由向量空间的方向确定,即按照给定直角坐标系(i, j, k)的左右手定则。若 (i, j, k)满足右手定则,则 (a, b, a×b)也满足右手定则;或者两者同时满足左手定则。

一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量。

向量叉乘的公式是什么?

分析如下:

向量的叉乘公式:

(x1,y1,z1)X(x2,y2,z2)=(y1z2-y2z1, z1x2-z2y1, x1y2-x2y1)

因为直角坐标系下,a=a1i+a2j+a3k,b=b1i+b2j+b3k; 而i=j×k,j=k×i,k=i×j(右手系),且

i×i=0,j×j=0,k×k=0,再利用叉乘的分配律推算一下。

拉格朗日公式 这是一个著名的公式,而且非常有用:a × (b × c) = b(a·c)? c(a·b)

向量叉乘的分配律的证明:

ax(b+c)=axb + axc?

这个可以用向量a,b,c的座标带进去,订边右边分别计算出结果,并证明相等

向量叉乘公式是什么,

叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。

|向量c|=|向量a×向量b|=|a||b|sin

向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方

向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此向量的外积不遵守乘法交换率,因为向量a×向量b= -向量b×向量a,

在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。

将向量用坐标表示(三维向量),若向量a=(a1,b1,c1),向量b=(a2,b2,c2),

则向量a×向量b=

| i j k |

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)

(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。

1、如下图利用加减消元法,为了容易记住其求解公式,但要记住这个求解公式是很困难的,因此引入三阶行列式的概念。记称左式的左边为三阶行列式,右边的式子为三阶行列式的展开式。

2、计算方法:

a、直接计算——对角线法,标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。

b、任何一行或一列展开——代数余子式,行列式某元素的余子式:行列式划去该元素所在的行与列的各元素,剩下的元素按原样排列,得到的新行列式。行列式某元素的代数余子式:行列式某元素的余子式与该元素对应的正负符号的乘积.即行列式可以按某一行或某一列展开成元素与其对应的代数余子式的乘积之和。

3、性质:

a、行列式与它的转置行列式相等。

b、互换行列式的两行(列),行列式变号。

c、如果行列式有两行(列)完全相同,则此行列式为零。

d、行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

e、行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。

f、行列式中如果有两行(列)元素成比例,则此行列式等于零。

g、把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

参考资料:(百度百科:三阶行列式)

向量积(向量相乘)的计算公式是什么?

向量相乘公式如下:

,(0°≤θ≤180°)

向量积(向量相乘),数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。

与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。

扩展资料:

向量积性质:

一、几何意义及其运用

叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。

二、代数规则

1、反交换律:a×b=-b×a

2、加法的分配律:a×(b+c)=a×b+a×c。

3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。

4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。

6、两个非零向量a和b平行,当且仅当a×b=0。

向量的叉乘公式是什么?(向量叉乘的公式是什么?)

好了,今天我们就此结束对“向量叉乘公式”的讲解。希望您已经对这个主题有了更深入的认识和理解。如果您有任何问题或需要进一步的信息,请随时告诉我,我将竭诚为您服务。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人,并不代表关注常识网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。

联系我们

在线咨询:点击这里给我发消息

微信号:CHWK6868

工作日:9:30-18:30,节假日休息