1. 关注常识网首页
  2. 教育

什么是“求导”,什么是“导数”?谢谢(导数的概念及其意义是什么?)

求导是求一个函数的导数的过程导数是微积分中的重要概念。导数定义为,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数...

好久不见了,今天我想和大家探讨一下关于“导数概念是什么呢”的话题。如果你对这个领域还不太熟悉,那么这篇文章就是为你准备的,让我们一起来探索其中的奥秘吧。

什么是“求导”,什么是“导数”?谢谢(导数的概念及其意义是什么?)

什么是“求导”,什么是“导数”?谢谢

求导是求一个函数的导数的过程

导数是微积分中的重要概念。导数定义为,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。

可导的函数一定连续。不连续的函数一定不可导。

物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

导数可以表示成为当函数曲线的一条割线转变为切线时其斜率的极限. 通常, 直接求给定函数的切线的斜率是困难的, 因为我们仅仅知道切线和曲线相交的点的坐标. 相反, 我们将使用割线来近似切线. 然后当我们计算切线斜率的极限时, 我们就能获得切线的斜率. 简单而言, 我们需要计算如下极限.

f'(x)=lim Δx=0 [f(x+Δx)-f(x)]/Δx

什么是导数?

虽然听说过现在的高中生要学微积分的部分知识,但是高一就学也太……

导数简单点说,就是函数的斜率。比如说y=x这个函数,图像你应该很清楚吧,虽然y是随着x的正加而增大的,但是其变化率也就是斜率是一直不变的。那么你能猜出来y=x的导数是多少么?

y=x的导数y'=1,同理y=2x时,则y'=2,这是最简单的。当函数是2次函数的时候,其斜率会忽大忽小,甚至忽正忽负,这时y'不再是一个固定的数,而是一个根据x值变化的数(说白了也是一个函数)

关于导数是怎么求出来的,这涉及到极限的问题了,我记得我上高三才学的极限,而且后来上了大学刚开始又是先讲极限,说白了导数要求的极限知识,高中所学不太够,现在跟你说这个有点扯远了。另外,虽然导数的原理是求极限所得,但是实际做题中很少有题目是用导数这个定义求导数,通常是一个基本导数表,学生把他背下来先(就跟背小九九一样),遇到具体问题在根据导数的一系列性质加以组合计算。

下面给你列一下初等函数的导数公式,如果你真是对数学特别有兴趣可以先背着玩:

c'=0(c为常数)

(x^a)'=ax^(a-1)<-就是因为这个,才有y=x,y'=1;y=2x,y'=2,再给你举个这个公式的例子:y=x^2,y'=2x;y=x^2 2x^3,y'=2x 6x^2

(a^x)'=(a^x)*lna,其特殊形式当a=e时,(e^x)'=(e^x)超级好用的一个公式

(loga x)'=1/(xlna) (a>0,a≠1),一样有特殊形式当a=e时(lnx)'=1/x

(sinx)'=cosx

(cosx)'=-sinx

(tanx)'=(secx)^2

(cotx)'=-(-cscx)^2

先写这些吧,如果高一的学生看到这里还不晕呢建议你跳级。这里我特别要说明一下,那个小写字母e,其实它跟圆周率一样是一个无限不循环小数,也是非常著名的无理数,在工业上用处特别多。由于其性质特殊而在数学里也表现活跃,e≈2.7

导数的定义是什么?

导数是当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

扩展资料:

导数的求导法则:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。

2、两个函数的乘积的导函数:一导乘二+一乘二导。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。

4、如果有复合函数,则用链式法则求导。

百度百科-导数

导数的概念及其意义是什么?

一、导数的概念

导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

二、导数的意义

导数与物理、几何、代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如:导数可以表示运动物体的瞬时速度和加速度(就直线运动而言,位移关于时间的一阶导数是瞬时速度,二阶导数是加速度),可以表示曲线在一点的斜率,还可以表示经济学中的边际和弹性。

以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。

导数的性质之单调性:

(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

什么是“求导”,什么是“导数”?谢谢(导数的概念及其意义是什么?)

好了,今天关于“导数概念是什么呢”的话题就讲到这里了。希望大家能够对“导数概念是什么呢”有更深入的认识,并且从我的回答中得到一些帮助。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人,并不代表关注常识网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。

联系我们

在线咨询:点击这里给我发消息

微信号:CHWK6868

工作日:9:30-18:30,节假日休息