厌氧消化甲烷和二氧化碳混合气体是什么(什么因素影响污水产甲烷量)
厌氧消化甲烷和二氧化碳混合气体是一种由微生物在厌氧条件下产生的混合气体,其中主要成分是甲烷(CH4)和二氧化碳(CO2)。这种混合气体也被称为沼气或沼气气体。沼...
非常感谢大家对甲烷菌是什么问题集合的关注和提问。我会以全面和系统的方式回答每个问题,并为大家提供一些实用的建议和思路。
厌氧消化甲烷和二氧化碳混合气体是什么
厌氧消化甲烷和二氧化碳混合气体是一种由微生物在厌氧条件下产生的混合气体,其中主要成分是甲烷(CH4)和二氧化碳(CO2)。这种混合气体也被称为沼气或沼气气体。
沼气气体是由厌氧消化过程中的微生物所产生的,此过程主要由甲烷菌和酸化菌参与。在这个过程中,有机废物(如食品残渣、畜禽粪便、农作物废弃物等)在缺氧或低氧的环境中,由酸化菌分解为有机酸和其他有机物,然后由甲烷菌进一步分解为甲烷和二氧化碳等化合物。
沼气气体因其具有丰富的甲烷和二氧化碳,以及其他小量杂质气体(如硫化氢、氮气等)而成为一种可再生能源。使用沼气气体可以替代天然气,并用于发电、生产热力等中小型能源应用场景。
家用天然气成分是什么
问题一:家用煤气成分是什么? 家用燃气有三种
1 天然气 主要成分是CH4
2 液化石油气 主要成分是丙烷、丁烷
3 水煤气 主要成分是 H2 CO
现在大部分都是改造成天然气 具体你家是哪种燃气请向你处燃气供应公司咨询
问题二:家用天然气的主要成分是什么? 天然气:又称油田气、石油气、石油伴生气。
天然气的化学组成及其物理化学特性因地而异:
主要成分是甲烷,还含有少量乙烷、丁烷、戊烷、二氧化碳、一氧化碳、硫化氢等。无硫化氢时为无色无臭易燃易爆气体,密度多在0.6~0.8g/cm3,比空气轻。通常将含甲烷高于90%的称为干气,含甲烷低于90%的称为湿气。
天然气 广义指埋藏于地层中自然形成的气体的总称。但通常所称的天然气只指贮存于地层较深部的一种富含碳氢化合物的可燃气体,而与石油共生的天然气常称为油田伴生气。天然气由亿万年前的有机物质转化而来,主要成分是甲烷,此外根据不同的地质形成条件,尚含有不同数量的乙烷、丙烷、丁烷、戊烷、己烷等低碳烷烃以及二浮化碳、氮气、氢气、硫化物等非烃类物质;有的气田中还含有氦气。天然气是一种重要的能源,广泛用作城市煤气和工业燃料;在70年代世界能源消耗中,天然气约占 18%~19%。天然气也是重要的化工原料。
煤气是用煤或焦炭等固体原料,经干馏或汽化制得的,其主要成分有一氧化碳、甲烷和氢等。因此,煤气有毒,易于空气形成爆炸性混合物,使用时应引起高度注意。
家用液化气一般指液化石油气(简称液化气),是石油在提炼汽油、煤油、柴油、重油等油品过程中剩下的一种石油尾气,通过一定程序,对石油尾气加以回收利用,采取加压的措施,使其变成液体,装在受压容器内,液化气的名称即由此而来。它的主要成分有乙烯、乙烷、丙烯、丙烷和丁烷等,在气瓶内呈液态状,一旦流出会汽化成比原体积大约二百五十倍的可燃气体,并极易扩散,遇到明火就会燃烧或爆炸。因此,使用液化气也要特别注意。
问题三:家庭燃气的主要成分是什么? 甲烷
问题四:天然气的主要成因是什么?其化学成分有哪些 天然气是指自然界中天然存在的一切气体,包括大气圈、水圈、和岩石圈中各种自然过程形成的气体(包括油田气、气田气、泥火山气、煤层气和生物生成气等)。而人们长期以来通用的“天然气”的定义,是从能量角度出发的狭义定义,是指天然蕴藏于地层中的烃类和非烃类气体的混合物。在石油地质学中,通常指油田气和气田气。其组成以烃类为主,并含有非烃气体。
天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。
天然气主要用途是作燃料,可制造炭黑、化学药品和液化石油气,由天然气生产的丙烷、丁烷是现代工业的重要原料。天然气主要由气态低分子烃和非烃气体混合组成。
随着天然气价格改革的加速落实,“十三五”大力推动天然气发展预期的逐步临近,以及近期天气转凉天然气使用量的大幅增加,天然气的发展将迎来历史性机遇
天然气是存
在于地下岩石储集层中以烃为主体的混合气体的统称,比重约0.65,比空气轻,具有无色、无味、无毒之特性。
天然气主要成分烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般有硫化氢、二氧化碳、氮和水气和少量一氧化碳及微量的稀有气体,如氦和氩等。天然气在送到最终用户之前,为助于泄漏检测,还要用硫醇、四氢噻吩等来给天然气添加气味。
天然气不溶于水,密度为0.7174kg/Nm3,相对密度(水)为约0.45(液化)燃点(℃)为650,爆炸极限(V%)为5-15。在标准状况下,甲烷至丁烷以气体状态存在,戊烷以上为液体。甲烷是最短和最轻的烃分子。
有机硫化物和硫化氢(H?S)是常见的杂质,在大多数利用天然气的情况下都必须预先除去。含硫杂质多的天然气用英文的专业术语形容为sour(酸的)。
天燃气每立方燃烧热值为8000大卡至8500大卡。每公斤液化气燃烧热值为11000大卡。气态液化气的比重为2.5公斤/立方米。每立方液化气燃烧热值为25200大卡。每瓶液化气重14.5公斤,总计燃烧热值159500大卡,相当于20立方天然气的燃烧热值。
天然气的成因是多种多样的,天然气的形成则贯穿于成岩、深成、后成直至变质作用的始终,各种类型的有机质都可形成天然气,腐泥型有机质则既生油又生气,腐植形有机质主要生成气态烃。
生物成因
成岩作用(阶段)早期,在浅层生物化学作用带内,沉积有机质经微生物的群体发酵和合成作用形成的天然气称为生物成因气。其中有时混有早期低温降解形成的气体。生物成因气出现在埋藏浅、时代新和演化程度低的岩层中,以含甲烷气为主。生物成因气形成的前提条件是更加丰富的有机质和强还原环境。
最有利于生气的有机母质是草本腐植型―腐泥腐植型,这些有机质多分布于陆源物质供应丰富的三角洲和沼泽湖滨带,通常含陆源有机质的砂泥岩系列最有利。硫酸岩层中难以形成大量生物成因气的原因,是因为硫酸对产甲烷菌有明显的 *** 作用,H2优先还原SO42-→S2-形成金属硫化物或H2S等,因此CO2不能被H2还原为CH4。
甲烷菌的生长需要合适的地化环境,首先是足够强的还原条件,一般Eh>
问题五:天然气的主要成分是什么? 天然气是指从气田开采得到的含甲烷等烷烃的气体。
根据天然气中甲烷和其它烷烃的含量不同,将天然气分为两种:
一种是含甲烷多的称为干天然气(干气),通常含甲烷80~99%(体积),个别气田的甲烷含量可高达99.8%。
另一种是除含甲烷以外,还含有较多的乙烷、丙烷、丁烷的气体,称为湿天然气(湿气),或称多油天然气。
有时人们往往把含甲烷等烷烃的气体都叫做天然气,当然这是不很确切的。如从油田开采石油时,得到的含烷烃的气体,这叫油田气。油田气几乎全部是饱和的碳氢化合物,主要含甲烷、乙烷、丙烷和丁烷以及少量的轻汽油。此外,气体中有时还存在硫化氢、硫醇、二氧化碳和氢气。油田气的组成因地区和季节等条件而异,通常的组成为甲烷10~85%(体积)、乙烷0~20%、丙烷0~22%、丁烷0~20%、戊烷和高级烃类0~10%、氮气及稀有气体0~10%、硫化氢0~1%,二氧化碳少量。又如从炼油厂炼油时得到的含甲烷等低级烷烃的气体,这叫炼厂气。炼厂气是石油加工过程中副产的各种加工气体的总称,其中主要包括热裂化气、焦化气、催化裂化气、稳定塔气等。所以油田气和炼厂气虽然同样都是含有甲烷等烷烃的气体,但不能一概都称为天然气。
沼气和坑气的主要成分也是甲烷,由于环境的不同,其它杂质的含量也不一致。沼气是池沼淤泥中一些有机物发酵而产生的。坑气又叫瓦斯,是煤矿煤层里的一些有机残余的分解产物随着煤的开采而释出的。
问题六:家用天然气中的主要成分做检测该找什么部门呢? 天然气想要一份国家的安全检测报告,就需要通过国家认可的检测机构做评定,只有国家认可的机构才能够出具有权威性的报告,目前我国这样的机构不是很多,英格尔检测就是其中一家,能够提供天然气检测报告。
问题七:在办公室里喂小鱼,周六周日两天会不会把小鱼饿死? 小鱼很耐饿,一般不生病,不缺氧,一星期不喂都没问题,相反,如果喂多了,反而容易死。
问题八:天然气有毒吗 应该怎么注意 无毒。
天然气的主要成分是甲烷,也没有其他有毒的成分,比重也比空气轻,泄漏容易散去,但在较密闭的空间内泄漏遇明火有爆炸的风险。
一般说的煤气中毒是以前的水煤气(一氧化碳和氢气),现在很少有这个了,大部分使用燃气中毒是因为使用燃气热水器时不完全燃烧产生一氧化碳中毒的。也是以前老式的直排式热水器容易中毒,现在的热水器废气都排到室外就很少会中毒,当使用自然排风遇到大风直接吹向排气口的时候可能中毒,现在高档的热水器使用电力强排风就基本没有什么事了。
防止泄漏一般就检查皮管、接头有没有损坏,皮管如果使用高档的金属软管就好多了。
问题九:天然气的主要成分是什么?家用液化气的主要成 天然气 广义指埋藏于地层中自然形成的气体的总称。但通常所称的天然气只指贮存于地层较深部的一种富含碳氢化合物的可燃气体,而与石油共生的天然气常称为油田伴生气。天然气由亿万年前的有机物质转化而来,主要成分是甲烷,此外根据不同的地质形成条件,尚含有不同数量的乙烷、丙烷、丁烷、戊烷、己烷等低碳烷烃以及二氧化碳、氮气、氢气、硫化物等非烃类物质;有的气田中还含有氦气。天然气是一种重要的能源,广泛用作城市煤气和工业燃料;在70年代世界能源消耗中,天然气约占 18%~19%。天然气也是重要的化工原料。煤气是用煤或焦炭等固体原料,经干馏或汽化制得的,其主要成分有一氧化碳、甲烷和氢等。因此,煤气有毒,易于空气形成爆炸性混合物,使用时应引起高度注意。家用液化气一般指液化石油气(简称液化气),是石油在提炼汽油、煤油、柴油、重油等油品过程中剩下的一种石油尾气,通过一定程序,对石油尾气加以回收利用,采取加压的措施,使其变成液体,装在受压容器内,液化气的名称即由此而来。它的主要成分有乙烯、乙烷、丙烯、丙烷和丁烷等,在气瓶内呈液态状,一旦流出会汽化成比原体积大约二百五十倍的可燃气体,并极易扩散,遇到明火就会燃烧或爆炸。因此,使用液化气也要特别注意。
在厌氧发酵过程中微生物起什么作用
主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。?
1、发酵细菌(产酸细菌):
发酵产酸细菌的主要功能有两种:①? 水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物;②? 酸化——将可溶性大分子有机物转化为脂肪酸、醇类等;主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时回成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。?
2、产氢产乙酸菌:
产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H2;为产甲烷细菌提供合适的基质,在厌氧系统中常常与产甲烷细菌处于共生互营关系。
主要的产氢产乙酸反应有:
注意:上述反应只有在乙酸浓度很低、系统中氢分压也很低时才能顺利进行,因此产氢产乙酸反应的顺利进行,常常需要后续产甲烷反应能及时将其主要的两种产物乙酸和H2消耗掉。?
主要的产氢产乙酸细菌多为:互营单胞菌属、互营杆菌属、梭菌属、暗杆菌属等;多数是严格厌氧菌或兼性厌氧菌。?
3、产甲烷菌
20世纪60年代Hungate开创了严格厌氧微生物培养技术之后,对产甲烷细菌的研究才得以广泛进行;产甲烷细菌的主要功能是将产氢产乙酸菌的产物——乙酸和H2/CO2转化为CH4和CO2,使厌氧消化过程得以顺利进行;主要可分为两大类:乙酸营养型和H2营养型产甲烷菌,或称为嗜乙酸产甲烷细菌和嗜氢产甲烷细菌;一般来说,在自然界中乙酸营养型产甲烷菌的种类较少,只有Methanosarcina(产甲烷八叠球菌)和Methanothrix(产甲烷丝状菌),但这两种产甲烷细菌在厌氧反应器中居多,特别是后者,因为在厌氧反应器中乙酸是主要的产甲烷基质,一般来说有70%左右的甲烷是来自乙酸的氧化分解。
什么因素影响污水产甲烷量
厌氧条件下,影响产甲烷量即是影响甲烷菌的生长。影响甲烷菌生长活性的因素有很多,包括
温度、酸碱度、碳氮比、负荷、氧化还原电位、有毒有害物质控制如氨氮的影响等。
1酸碱度
甲烷菌生长最适宜的pH范围是6.8-7.2,若pH低于6或高于8,正常的消化就遭到破坏。因此,消化系统内必须存在足够的缓冲物质,如重碳酸盐,用以中和产酸菌产生的过量酸。一般来说,消化系统应保持碱度2000~3000mg/L(以CaCO3计)
2 碳氮比
有机物的碳氮比(C/N)对消化过程有较大影响。碳氮比过高,组成细菌的氮量不足,消化液的缓冲能力较低,pH易下降;碳氮比太低,则氮含量过高,pH可能上升到8.0以上,脂肪酸的铵盐积累,对甲烷菌产生毒害作用。实验表明,C/N=12~16时,处理效果较好。如以C/N=15为准,推算的营养比约为C:N:P=75:5:1,若以C与COD的化学计量关系推算,则为COD:N:P=200:5:1。
3 负荷
负荷常以投配率表示。投配率过高,则产酸速率大于甲烷菌的耗酸速率,挥发酸积累,使pH下降,破坏碱性消化,产气率降低;投配率过低,虽可提高产气率,消化完全,但设备容积大,基建投资也大。中温消化污泥投配率以6%-8%为宜。
4 氧化还原电位
厌氧消化系统中氧化还原电位的高低非,对甲烷菌的影响极为明显。甲烷菌细胞内具有许多低氧化还原点位的酶系。当体系的氧化还原电位高时,这些酶系将被高电位不可逆转地氧化破坏,是甲烷菌的生长受到抑制,甚至死亡。产酸菌可以在氧化还原电位为+l00~-100mV的环境正常生长和活动;而产甲烷菌的最适氧化还原电位为-300~-400mV。
5 有毒有害物质控制
工业废水中常含有毒化合物,而厌氧处理中甲烷菌对毒性物质往往比发酵菌更为敏感,因此毒性物质的存在及其浓度是影响厌氧处理的重要因素。
5.1 氨氮的影响
氨氮有刺激浓度和抑制浓度之分。氨氮浓度在50~200mg/L时,对厌氧反应器消化液中的微生物有刺激作用,在1500~3000mg/L则有明显的抑制作用。值得注意的是:消化液的pH值决定了水中氨和铵离子间的分配百分比。当pH值较高时,对甲烷菌有毒性的游离氨的比例也会相应提高。
废水中氨氮浓度高于 3000mg/L 时,不论 pH 值如何,铵离子都有很大的毒性,厌氧反应器将无法运转。进水氨氮浓度最好控制在 800mg/L 以内,可通过稀释废水,或者从废水中去除氨氮源,或添加不含氮的有机废水,调节废水的碳氮比等方式实现。
5.2 硫酸盐的影响
当废水中含有高浓度的硫酸盐时,会对厌氧反应产生不利的影响,主要表现在以下两个方面:一是由于硫酸盐还原菌和产甲烷菌都可以利用乙酸和 H2而产生基质竞争性抑制作用;二是硫酸盐还原菌会将SO42-转化为H2S,而H2S是有毒的。还原的终产物—硫化物对产甲烷菌和其它厌氧菌直接产生毒害作用。一般厌氧反应器中硫酸盐离子的浓度应小于 1000mg/L。
如废水中含有重金属、碱土金属、三氯甲烷、氰化物、酚类、硝酸盐和氯气等有毒物质,必须考虑对废水进行必要的预处理。
在厌氧沉淀池内甲烷细菌通过什么分解污水中的有机物
(1)、在曝气池中通入气体时,活性污泥中的( 需氧 )(填“需氧”或“厌氧”)细菌,能够把污水中的( COD或有机污染物 )分解成( CO2 )和( 水 ),使污水能到净化.
(2)、在沉淀池底部没有氧气的环境中,一些杆菌和甲烷菌可以通过( 厌氧 )把污水中的( COD )分解而净化污水,同时,还能产生( 甲烷气 ),可以用于照明或取暖.
厌氧菌是什么意思
厌氧菌,通常认为是一类只能在低氧分压的条件下生长,而不能在空气(18%氧气)和(或)10%二氧化碳浓度下的固体培养基表面生长的细菌。根据其对氧的耐受程度不同,又可分为“专性厌氧菌”、“兼性厌氧菌”、“微需氧厌氧菌”。
此类细菌缺乏完善的呼吸酶系统,只能进行无氧发酵,不但不能利用分子氧,而且游离氧对其还有毒性作用。如破伤风杆菌、肉毒杆菌、产生荚膜杆菌等。只能在没有游离氧存在的环境中生存的微生物。甲烷菌即属此类细菌。人们利用甲烷菌等产生沼气,利用厌氧菌处理各种有机废物和废水。
扩展资料
厌氧菌是人体正常菌群的组成部分,广泛存在于人体皮肤和腔道的深部黏膜表面,在组织缺血、坏死,或者需氧菌感染的情况下 导致局部组织的氧浓度降低,就会发生厌氧菌感染,可以引起人体任何组织和器官感染。
例如我们所了解的阑尾炎、口腔感染、妇产科各种感染性疾病、骨折等等,都有厌氧菌的身影。在治疗某些感染性疾病时,有时候即使使用再高级的抗生素,效果也不好,反而容易导致菌群失调,加重病情。这种情况,可能就是因为我们忽视了对厌氧菌的治疗。
百度百科—厌氧菌
厌氧挥发酸高,怎么办?碱度提高后,挥发酸不降,是什么原因?
挥发酸不降是因为产生的挥发酸大于等于产甲烷菌消耗的挥发酸。投加碱能使废水的PH不至于急剧降低,可提升碱度,是脂肪酸变成脂肪酸盐,但不能降低挥发酸。监测出来的挥发酸是脂肪酸和脂肪酸盐的总和。
地球上第一次出现生物,是什么时期?
此问题有点难回答,试着说说。
首次生命如果从单细胞算起应该是近四十亿年了。自46年前地球形成。此时地球是个火球,几亿年后又遇宇宙大轰炸,大量天外陨石砸向地球由此温度递减,大量水汽由天而下就是几百万年,地球成了一个大水球。此时温度适合,海水溶合各种原素形成了一种原始生命汤,有说是海底黑烟囱是合成生命DNA的地方,也有说是浅海小水坑在太阳光的照射下合成DNA,初始它们就是一段分子的组合,无生无死,随便地漂于海水中,逐步它们被一种膜给包住了,这样它们就比较稳定了,几千万年过去什么也没有变化,有一天,有一个这样的分子包开始自己断裂形成另一个与它一模一样的分子包,这种断裂叫细胞分裂,分裂依靠的是太阳能,这种单细胞分裂速度很慢,所以近二十几亿年没有什么变化,也就是大概十亿前也有人说是十五亿前,个别细胞开始不耐心了,开始呑食同胞,这比靠晒太阳来的快,获得能量多,复制进入到快车道,细胞一多就开始胡吃海喝了。也就是某一天某一个细胞吃了另一个细胞,想消化它有点难,被吃的细胞也不反抗不闹腾,反而把自己的能量多少给吃它主人,这种良心的配合令主人很高兴,咱俩风雨同舟共渡难关,细胞就这样依靠太阳能获得能量,一部分自用,另外的给点一叫线粒体的内生细胞吃,于是地球上仅此一次的一种内共生生命形成。这就发生了翻天覆地的变化,由于有了内能这个发动机,细胞分裂大大加速,真核细胞形成,把古生,原生细胞也包括现今的病毒等抛在后面。真核细胞由于有了发动机这个内能系统,不断发展壮大拉邦结伙只等天赐良机。此前几十亿的篮藻细胞产生了大量的氧气这个付产品,早期大多用于氧化海水中的铁原素,所以海水含氧量不高,细胞分裂慢,不能结合成体,如今海水中铁原素氧化完毕(这就是我们的铁矿形成机制)氧含量升高,再加上六亿年前雪球地球事件,大量细胞死的死伤的伤,蓝藻类细胞也大量死亡(澳洲的沙鱼湾叠层石就是见证),由此真核细胞得到了发展机会,开始手拉手,肩并肩形成了初始的多细胞生物。由此而来从几个细胞结合到成千上万个结合,从自生复制到异性复制,终于在伍亿六千万年前产生我们称之为埃迪卡拉生物群,在伍亿叁仟万年前产生了我国云南省澄江帽天山生物群,在伍亿贰仟万年前世界著名生物起源发现地:布尔吉斯生物群。我们统称寒武纪生命大爆发!由此从单细胞经过几十亿的进化终于进化了我们所有生物门,大部分的生物类,即门类齐全。它们有的走了,象奇虾,三叶虫,怪蛋虫等,有的历经万千磨难登上陆地,象现今所有昆虫,植物就最早登陆舰的先锋,接下来有一种叫皮卡虫的后代有额鱼登陆了,它是所有脊椎动物祖先,产生一代霸主恐龙,统治地球一亿六千万年之久,要不是天要灭它不会有我们。正是六千五佰万年前陨石轰炸地球灭绝了一代霸主恐龙,由此哺乳类动物登上舞台,产生了一个两脚动物,这个动物自言不惭地称自己为智人。统治地球才刚刚开始四万多年。当我们回望生命进程,他们有的走了,有的来了,生生不息,它们把生命的DNA遗传给我们,我们是他们的后代,由此让你我敬畏地球上的每一个生命,敬畏生命的摇篮:地球!
古生物学家告诉我们,大约在 36 亿年前,第一个有生命的细胞产生.
生命的起源和细胞的起源的研究不仅有生物学的意义,而且有科学的宇宙观的意义.细胞的起源包含三个方面;①构成所有真核生物的真核细胞的起源;②与生命的起源相伴随的原核细胞的起源;③最新发展的三界学说,即古核细胞的起源.
生命的起源应当追溯到与生命有关的元素及化学分子的起源.因而,生命的起源过程应当从宇宙形成之初、通过所谓的“大爆炸”产生了碳、氢、氧、氮、磷、硫等构成生命的主要元素谈起.
大约在66亿年前,银河系内发生过一次大爆炸,其碎片和散漫物质经过长时间的凝集,大约在46亿年前形成了太阳系.作为太阳系一员的地球也在46 亿年前形成了.接着,冰冷的星云物质释放出大量的引力势能,再转化为动能、热能,致使温度升高,加上地球内部元素的放射性热能也发生增温作用,故初期的地球呈熔融状态.高温的地球在旋转过程中其中的物质发生分异,重的元素下沉到中心凝聚为地核,较轻的物质构成地幔和地壳,逐渐出现了圈层结构.这个过程经过了漫长的时间,大约在38亿年前出现原始地壳,这个时间与多数月球表面的岩石年龄一致.
生命的起源与演化是和宇宙的起源与演化密切相关的.生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化.资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物.在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子.通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命.至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式.
38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的.现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养.澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据.
原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成.但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙
太古宙(Archean)是最古老的地史时期.从生物界看,这是原始生命出现及生物演化的初级阶段,当时只有数量不多的原核生物,他们只留下了极少的化石记录.从非生物界看,太古宙是一个地壳薄、地热梯度陡、火山—岩浆活动强烈而频繁、岩层普遍遭受变形与变质、大气圈与水圈都缺少自由氧、形成一系列特殊沉积物的时期;也是一个硅铝质地壳形成并不断增长的时期,又是一个重要的成矿时期.
元古宙(Proterozoic)初期地表已出现了一些范围较广、厚度较大、相对稳定的大陆板块.因此,在岩石圈构造方面元古代比太古代显示了较为稳定的特点.早元古代晚期的大气圈已含有自由氧,而且随着植物的日益繁盛与光合作用的不断加强,大气圈的含氧量继续增加.元古代的中晚期藻类植物已十分繁盛,明显区别于太古代.
震旦纪(Sinian period)是元古代最后期一个独特的地史阶段.从生物的进化看,震旦系因含有无硬壳的后生动物化石,而与不含可**动物化石的元古界有了重要的区别;但与富含具有壳体的动物化石的寒武纪相比,震旦系所含的化石不仅种类单调、数量很少而且分布十分有限.因此,还不能利用其中的动物化石进行有效的生物地层工作.震旦纪生物界最突出的特征是后期出现了种类较多的无硬壳后生动物,末期又出现少量小型具有壳体的动物.高级藻类进一步繁盛,微体古植物出现了一些新类型,叠层石在震旦纪早期趋于繁盛,后期数量和种类都突然下降.再从岩石圈的构造状况来看,震旦纪时地表上已经出现几个大型的、相对稳定的大陆板块,之上已经是典型的盖层沉积,与古生界相似.因此,震旦纪可以被认为是元古代与古生代之间的一个过渡阶段.
1977年10月,科学家再南非34亿年前的斯威士兰系的古老沉积里发现了200多个古细胞化石,便将生命起源的时间定在34亿年前.不久,科学家又在35亿年的岩石层中惊诧地找到最原始的生物蓝藻,绿藻化石,不得不将生命源头继续上溯.
因为8亿年前地球上就出现了真核生物,那时候是震旦纪.而只有地球上有了充足的氧气之后,真核细胞才可能出现.
而在此之前都是厌氧的原核生物
自从盘古开天地,三皇五帝就诞生。
远古时代,天地成型,水分中的微生物开始复制繁殖!
非常高兴能与大家分享这些有关“甲烷菌是什么”的信息。在今天的讨论中,我希望能帮助大家更全面地了解这个主题。感谢大家的参与和聆听,希望这些信息能对大家有所帮助。