等比数列 求和公式(等比数列求和用什么方法?)
等比数列求和公式如下:Sn=n×a1(q=1)。Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q为比值,n为项数)。分析:要求...
大家好,今天我来为大家揭开“等比数列怎么求和”的神秘面纱。为了让大家更好地理解这个问题,我将相关资料进行了整合,现在就让我们一起来探索吧。
等比数列 求和公式
等比数列求和公式如下:
Sn=n×a1(q=1)。
Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q为比值,n为项数)。
分析:要求Sn,首先要求出该数列的通项公式,an实际上可以看成一个首项为1,公比为3的等比数列的前n项和,先利用等比数列的求和公式求出an的通项公式再进行求和。
等比数列前n项和公式在运用时,特别要注意对公比q的讨论,要分为q等于1和q不等于1两种情况,另外还要注意等比数列求和公式的推导过程(错位相减法),这也是数列求和的一个常用方法。
等比数列的性质
(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。
(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an×bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。
(5)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。
生活中的应用
等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。
随着房价越来越高,很多人没办法像这样一次性将房款付清,总是要向银行借钱,既可以申请公积金也可以申请银行贷款,但是如果还款到一定时间后想了解自己还得还多少本金时,也可以利用数列来自己计算。
等比数列的求和公式是?
等比数列求和公式:Sn=a1(1-q^n)/(1-q)。
其中常数q叫作公比,在等比数列中,首项a1与公比q都不为零。等比数列求和公式是求等比数列之和的公式。
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公式可以快速的计算出出该数列的和。
一个数列,如果任意的后一项与前一项的比值是同一个常数(这个常数通常用q来表示)且数列中任何项都不能为0。
等比数列怎样求和?
1、等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列。
举例:
数列:2、4、8、16、······
每一项与前一项的比值:4÷2=8÷4=16÷8=2,所以这个数列是等比数列,而它的公比就是2。
2、等比数列的求和公示如下:
其中a1为首项,q为等比数列公比,Sn为等比数列前n项和。
还是以数列:2、4、8、16、······为例,a1=2,公比q=2,
假如是求前四项的和,即:Sn=2×(1-2^4)÷(1-2)=30,与2+4+8+16=30 相符。
扩展资料等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金×(1+利率)^存期
等比数列求和用什么方法?
(乘上公比)再用错位相减法。
形如An=BnCn,其中{Bn}为等差数列,{Cn}为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比q,即q·Sn;然后错开一位,两个式子相减。这种数列求和方法叫做错位相减法。
典例:求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)
当x=1时,Sn=1+3+5+…+(2n-1)=n2
当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1
∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn
两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn
扩展资料:
每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)。在等比数列中,首项A1与公比q都不为零。
百度百科--等差数列
百度百科--等比数列
好了,今天关于“等比数列怎么求和”的话题就讲到这里了。希望大家能够对“等比数列怎么求和”有更深入的认识,并从我的回答中得到一些启示。如果您有任何问题或需要进一步的信息,请随时告诉我。