知道三角形三边怎么求面积?(已知三角形三边 求面积?)
已知三角形的三边分别是a、b、c,先算出周长的一半s=1/2(a+b+c)则该三角形面积S=根号[s(s-a)(s-b)(s-c)]这个公式叫海伦——秦九昭公式...
对于已知三角形三边求面积的问题,我有一些了解和研究,也可以向您推荐一些专业资料和研究成果。希望这对您有所帮助。
知道三角形三边怎么求面积?
已知三角形的三边分别是a、b、c,
先算出周长的一半s=1/2(a+b+c)
则该三角形面积S=根号[s(s-a)(s-b)(s-c)]
这个公式叫海伦——秦九昭公式
证明:
设三角形的三边a、b、c的对角分别为A、B、C,
则根据余弦定理c?=a?+b?-2ab·cosC,得
cosC = (a?+b?-c?)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos?C)
=1/2*ab*√[1-(a?+b?-c?)?/4a?b?]
=1/4*√[4a?b?-(a?+b?-c?)?]
=1/4*√[(2ab+a?+b?-c?)(2ab-a?-b?+c?)]
=1/4*√{[(a+b)?-c?][c?-(a-b)?]}
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设s=(a+b+c)/2
则s=(a+b+c), s-a=(-a+b+c)/2, s-b=(a-b+c)/2, s-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[s(s-a)(s-b)(s-c)]
所以,三角形ABC面积S=√[s(s-a)(s-b)(s-c)]
扩展资料三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。
三角形性质
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
9、直角三角形斜边的中线等于斜边的一半。
10、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
11、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
12、 等底同高的三角形面积相等。
13 底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
14、三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
15、等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。
16、 在同一个三角形内,大边对大角,大角对大边。
已知三边求三角形面积 公式是什么?
已知三角形的三边,可以使用海伦公式直接计算出三角形的面积,公式中三角形的面积S=√p(p-a)(p-b)(p-c),其中p=(a+b+c),a,b,c是三角形的三条边。
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以被称为海伦公式。?
三角形特点:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
已知三角形三边求面积
利用海伦公式:
公式中a,b,c分别为三角形三边长,p为半周长,S为三角形的面积。
或者利用三斜求积术:
a,b,c分别为三角形三边长,p为半周长,S为三角形的面积。
扩展资料性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
已知三角形三边 求面积?
根据海伦公式求:
已知三角形的三边分别是a、b、c,求面积。
先算出周长的一半p=1/2(a+b+c),然后根据公式,代入数值即可。
扩展资料:
用四边长无法表达某个四边形面积(某些特例除外),必须添加某些条件,比如角、对角线等。
婆罗摩笈多(Brahmagupta)在公元7世纪初的一部论及天文的著作中,给出了用四边长a、b、c、d表达圆内接四边形面积的婆罗摩笈多公式:?
三角形3条边已知求面积公式
三角形3条边已知求面积公式如下:
三角形三边面积公式:已知三角形的三边长分别为a、b、c,根据海伦公式则三角形的面积公式,令p=(a+b+c)/2,则面积S=√[p(p-a)(p-b)(p-c)],其中公式里的p为半周长。
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。它的特点是形式漂亮,便于记忆。
相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以被称为海伦公式。中国秦九韶也得出了类似的公式,称三斜求积术。
三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
三角形(triangle)是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
海伦公式意义:
海伦公式的提出为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用海伦公式可以更快更简便的求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。
好了,今天关于“已知三角形三边求面积”的话题就讲到这里了。希望大家能够通过我的介绍对“已知三角形三边求面积”有更全面、深入的认识,并且能够在今后的实践中更好地运用所学知识。