1. 关注常识网首页
  2. 科普知识

芝诺悖论是怎样解决的啊(芝诺悖论是什么?芝诺悖论的内容是什么)

我们假设一个时间段是绝对不可分的,因为这个时间段不可分,所以物在这个时间段内是静止的,如果是运动的,这个时间段就是可分的。因为这个时间段绝对不可分,所以物在这个时间段内是绝对静止的。但我们知道,从绝对...

我们假设一个时间段是绝对不可分的,因为这个时间段不可分,所以物在这个时间段内是静止的,如果是运动的,这个时间段就是可分的。因为这个时间段绝对不可分,所以物在这个...更多芝诺悖论是怎样解决的啊话题,以及更多芝诺悖论最后是怎么解决的的详细内容,欢迎浏览我们的专题频道。

芝诺悖论是怎样解决的啊(芝诺悖论是什么?芝诺悖论的内容是什么)

芝诺悖论是怎样解决的啊

我们假设一个时间段是绝对不可分的,因为这个时间段不可分,所以物在这个时间段内是静止的,如果是运动的,这个时间段就是可分的。因为这个时间段绝对不可分,所以物在这个时间段内是绝对静止的。但我们知道,从绝对的静止中是不能够产生出运动来的。因而物的运动是不可能的。

同理,我们假设一个空间段是绝对不可分的,因为这个空间段不可分,所以处在这个空间段内的物是静止的,如果物在这个空间段是运动的,这个空间段就是可分的。因为这个空间段绝对不可分,所以物在这个空间段内是绝对静止的。但是我们知道,从绝对的静止中是不能够产生出运动来的。因而物的运动是不可能的。

芝诺悖论是怎样解决的啊?

譬如说,阿基里斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。实际情况为阿基里斯必然会在100/9秒之后追上乌龟。按照悖论的逻辑,这100/9秒可以无限细分,给一种好像永远也过不完的印象。但其实根本不是如此。

这就类似于有1秒时间,先要过一半即1/2秒,再过一半即1/4秒,再过一半即1/8秒,这样下去永远都过不完这1秒,因为无论时间再短也可无限细分。尽管看上去要过1/2、1/4、1/8秒等等,好像永远无穷无尽。

但其实时间的流动是匀速的,1/2、1/4、1/8秒,时间越来越短,看上去无穷无尽,其实加起来只是个常数而已,也就是1秒。所以说,芝诺的悖论是不存在的。

扩展资料

设乌龟先前所走过的所有的点属于集合B,乌龟现在所在的点标志为b,乌龟所走过的所有的点是集合A,A由集合B中所有的点加上b点构成。只要是乌龟先前所在的点,都是阿基里斯可以走到的,因而阿基里斯可以走到集合B中所有的点。

如果阿基里斯走过了集合B中所有的点,阿基里斯与b点的距离就已经是0(如果不是0,则应该在阿基里斯与b点之间还会存在着一个点,但这个点并不存在),也就是说,阿基里斯已经追上了乌龟。

而按照悖论所设定的条件,阿基里斯可以走到乌龟先前所走过的所有的点。因而阿基里斯追到了乌龟。但在上面的分析中发现了一个有趣的矛盾,这就是b既属于B又不属于B,也就是说,b既是现在又是先前。而且这是阿基里斯得以追上乌龟的前提和条件。

此悖论假设阿基里斯永远只能到达龟前一个时间段到达的地方,即追上的前一个时间段,此时条件未发生变化,并先承认此时间段两者间仍有差异,然后用不同的时间段进行重复换算,假设条件仍未变化。而在此时间段的下一个口径相同的时间段里,阿基米斯就会追上。

相反观点:这证明是错误的。因为证明假设了阿基里斯可以走一个点,在事实上回避了悖论中无法找第1点问题实质。故此证明和悖论无关,只是把小学应用题用集合论复述了一遍。

参考资料来源:百度百科-阿基里斯悖论

参考资料来源:百度百科-芝诺悖论

芝诺悖论最后是怎么解决的?

当人类面对这深邃的宇宙开始思考一些问题的时候,他们就已经开始研究运动了,而运动的存在性问题是其中最为重要、也是最令人困惑的第一个问题.

表面上看来,运动的存在性是显然的,然而芝诺却最早以简单的论证“证明”了运动不可能存在,他也由于这一悖论式的证明而为后人所永远铭记.芝诺是古希腊时期爱利亚学派的主要成员,这个学派的基本思想是否认现实世界中的任何运动变化,认为它们只是真实存在的表面现象.芝诺为了证明他们的观点,第一个设想和论证了物体运动中存在的令人不安的困难.

芝诺的论证是这样的:你若想追上乌龟,你必须首先到达乌龟开始跑的位置,但当你到达乌龟开始跑的位置时,乌龟在这段时间里已经跑到前面去了,当你再想去追乌龟时,你面临同样的问题,即你仍必须首先要跑到乌龟此刻的位置,而等你跑到了乌龟又向前移动了.好,虽然你比乌龟跑得快,但你也只能按上述过程逐渐逼近乌龟,这样的过程将无限次地出现,而在每一阶段乌龟总在你前头.由于有限的你无法完成这无限个阶段,于是你永远也追不上乌龟.

“但是,我绝对可以追上乌龟!”你可能忍不住要争辩道.请别急,芝诺将进一步论证你根本就无法开始运动,更不用说追上乌龟了.你看,如果你想到达乌龟开始跑的位置,你就必须首先到达这段距离的中点,而你若想到达这个中点,你又必须首先到达这一半距离的中点,如此等等.由于这一二分过程可以无限地进行下去,而你无法完成无限个过程,于是你实际上都无法离开起点.

“但是,……”,你也许已陷入了沉思之中.是的,尽管芝诺的论证简单易懂,但是要找出其论证中的问题却并不容易.实际上,自从芝诺悖论提出以来,人们一直试图指出其中的错误所在,然而直到今天,仍然没有一个完全满意的解答.

一般认为,芝诺悖论由四个论证组成,它们是二分法、阿基里斯、飞矢不动和运动场.

芝诺首先假定时间和空间是连续的2,即假定运动是连续的.为了证明这种连续运动是不可能的,芝诺考察了两种情况,它们是孤立物体的连续运动情况和两个物体的相对连续运动情况.

对于孤立物体的连续运动情况,他提出了一种“二分法”证明.芝诺认为,任何一个物体要想从A点运动到B点,必须首先到达AB的中点C,而要到达C点,他又必须首先到达AC的中点D,同样,要到达D点,他又必须首先到达AD的中点,等等.由于时间和空间是连续的,这一二分过程总可以无限地进行下去,于是该物体实际上都无法离开A点,因此孤立物体的连续运动是不可能的.

对于两个物体的相对连续运动情况,芝诺提出了一个称为“阿基里斯”的证明.他说,阿基里斯若想追上乌龟,他必须首先到达乌龟开始跑的位置,但当他到达乌龟开始跑的位置时,乌龟在这段时间里已经跑到前面去了,当阿基里斯再想去追乌龟时,他面临同样的问题,即他仍必须首先要跑到乌龟此刻的位置,而等他跑到了乌龟又向前移动了.虽然阿基里斯比乌龟跑得快,但他也只能按上述过程逐渐逼近乌龟,这样的过程可以无限次地出现,在每一阶段乌龟总在他前头.由于阿基里斯无法完成这无限个阶段,于是他永远也追不上乌龟,从而两个物体的相对连续运动也是不可能的.

其次,芝诺假定时间和空间是分立的,即假定运动是间断的.为了证明这种间断运动也是不可能的,芝诺同样考察了两种情况,即孤立物体的间断运动情况和两个物体的相对间断运动情况.

对于孤立物体的间断运动情况,他提出了“飞矢不动”论证3.芝诺说,由于运动是位置的变动,而飞矢在任何一个时间单元(或时刻)都呆在一个位置上,即在任何时间单元(或时刻)它的位置都没有变化,于是任何一个时间单元(或时刻)的飞矢是不动的,因此飞矢是不动的.

对于两个物体的相对间断运动情况,芝诺提出了“运动场”论证.他假设有A、B、C三列物体,物体B、C相对于A的运动方向相反,并且每一时间单元物体B、C相对于A都运动一个空间单元.于是,在一个时间单元过后物体B、C之间相对移动了两个空间单元,从而物体B相对于C移动一个空间单元需要半个时间单元,而物体B相对于A移动一个空间单元却需要一个时间单元,于是一个时间单元将等于半个时间单元.这一结论明显是不成立的,因此两个物体的相对间断运动也是不可能的.

是的,芝诺的结论显然是不对的,每个清醒的人都知道.然而,他的论证却并不一定就是错误的,为什么呢?因为他是在一定假设的前提下证明你追不上乌龟的,而这些假设不一定都正确.芝诺的假设包括:时间和空间是连续的,运动也是连续的.尽管这些假设看起来似乎是显然的,但是现代科学却已经暗示了它们很可能并不是正确的.因此,如果芝诺的论证没有问题,那么2000多年前的他就已经证明了时间、空间和运动不可能都是连续的.这是一个惊人的结论,它完全违背我们的常识,但芝诺成功了吗?让我们再来看一看他的具体论证.

可以看出,芝诺论证的关键在于他认为物体无法经过无穷多个点或区间而在连续时空中完成运动,但是他的根据呢?仔细检查后你会发现,没有!难道这是一条十分明显的、不需要进一步说明的公理吗?或许初看起来我们也会认为物体无法经过无穷多个点或区间,但喜欢刨根问底的人还是想问问芝诺这是为什么.当然,芝诺是无法回答了,那就让我们来分析一下这个看法是否正确吧.

首先,我们必须弄清“完成”的含义.所谓“完成”是指过程的发生只需要有限的时间,它本质上是以时间概念为基础的.于是,问题成为:物体是否能够在有限时间内经过空间中的无穷多个点或区间?根据时间和空间的连续性假设,有限的空间含有无穷多个点或区间,而有限的时间同样含有无穷多个时刻或时间区间,并且它们可以形成一个一一对应关系.因此,原则上物体可以利用有限时间内的无穷多个时刻或时间区间来通过有限空间中的无穷多个点或区间,从而物体便可以自然地在有限时间内经过空间中的无穷多个点或区间了.于是,物体是可以(在连续时空中)经过无穷多个点或区间而完成运动的.看来,芝诺所依据的似乎明显正确的看法其实是错误的,他在强调空间连续性的同时却忽略了时间的连续性.

然而,为什么我们总有一种感觉,认为物体无法经过无穷多个点或区间呢?这个问题很重要,因为芝诺也许正是利用了这种感觉才让人们为他的论证所迷惑.为此,让我们回忆一下我们通常是如何来理解无穷的完成过程的.你会注意到,我们在理解无穷的完成时,总是不知不觉地要从心理上去追踪它的完成,如追踪物体经过无穷多个点或区间.然而,由于我们追踪物体经过任何一个点或区间都需要有限的时间,从而我们便无法追踪物体经过无穷多个点或区间,因为我们的追踪将需要无穷长的时间!但是,这并不妨碍物体自己经过无穷多个点或区间,毕竟,我们没有理由认为无法通过意识追踪的过程实际上也无法完成. 找到了困惑的根源,你一定有一种如释负重的感觉吧,看来理解运动问题其实并不难.是的,有时你离答案仅一步之遥,而跨过去你的思想就会海阔天空,关键在于你是否愿意多花一点时间来思考了.理解总是令人愉悦的!而理解之前的困惑同样是一种妙不可言的经历,它会帮助你真正认识自己,并让你成为一个有理性的、智慧的人.

现在,你一定确信并理解自己可以追上乌龟了,衷心地祝贺你.

芝诺悖论怎么解决啊

┴———————┴————┴———┴——┴——┴——

A B C D E F……

阿基里斯在A点时,乌龟在B点;他追到B,它爬到C;他追到C,它爬到D,……我们看到,阿基里斯离乌龟越来越近,也就是,AB,BC,CD,……这些线段越来越短,每个都只有前一个的1/10,但是每一个线段的长度都不会是0,这就是说,当阿基里斯按上面的过程去追乌龟时,在任何有限次之内他都追不上乌龟。 那么,阿基里斯真的追不上乌龟了吗? 当然不是。所以会产生上述困难,是因为忽视了一个十分重要的因素:由于那些线段越来越短,阿基里斯跑完那些线段所用的时间也越来越短,下一次只相当于上一次的1/10。 芝诺悖论的关键是使用了两种不同的时间测度。原来,我们用来测量时间的任何一种“钟”都是依靠一种周期性的过程作标准的。如太阳每天的东升西落,月亮的圆缺变化,一年四季的推移,钟摆的运动等等。人们正是利用它们循环或重复的次数作为时间的测量标准的。 芝诺悖论中除了普通的钟以外,还有另一种很特别的“钟”,就是用阿基里斯每次到达上次乌龟到达的位置作为一个循环。

用这种重复性过程测得的时间称为“芝诺时”。例如,当阿基里斯在第n次到达乌龟在第n次的起始点时,芝诺时记为n,这样,在芝诺时为有限的时刻,阿基里斯总是落在乌龟后面。但是在我们的钟表上,假如阿基里斯跑完AB(即100米)用了1分钟,那么他跑完BC只要6秒钟,跑完CD只需 0.6秒,实际上,他只需要1 1/9分钟就可以追上乌龟了。

因此,芝诺悖论的产生原因,是在于“芝诺时”不可能度量阿基里斯追上乌龟后的现象。在芝诺时达到无限后,正常计时仍可以进行,只不过芝诺的“钟”已经无法度量它们了。 这个悖论实际上是反映时空并不是无限可分的,运动也不是连续的。

芝诺悖论是什么?芝诺悖论的内容是什么

芝诺悖论(Zeno's paradox)是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论。

悖论学说

这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支援他老师巴门尼德关于"存在"不动、是一的学说。这些悖论中最著名的两个是:"阿基里斯跑不过乌龟"和"飞矢不动"。这些方法可以用微积分(无限)的概念解释,但还是无法用微积分解决,因为微积分原理存在的前提是存在广延(如,有广延的线段经过无限分割,还是由有广延的线段组成,而不是由无广延的点组成。),而芝诺悖论中既承认广延,又强调无广延的点。这些悖论之所以难以解决,是因为它集中强调后来笛卡尔和伽桑迪为代表的机械论的分歧点。

三个例子

追乌龟

阿喀琉斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟十倍,乌龟在前面100米跑,他在后面追,但他不大概追上乌龟。因为在竞赛中,追者首先必须到达被追者的出发点,当阿喀琉斯追到100米时,乌龟已又向前爬了10米,于是,一个新的起点产生了阿喀琉斯必须继续追,而当他追到乌龟爬的这10米时,乌龟又已向前爬了1米,阿喀琉斯只能再追向那个1米。就这样,乌龟会制造出无穷个起点,它总能在起点与自个之间制造出一个距离,无论这个距离有多小,但只要乌龟不停地奋力向前爬,阿喀琉斯就永远也追不上乌龟!

"乌龟" 动得最慢的物体不会被动得最快的物体追上。由于追赶者首先应当达到被追者出发之点,此时被追者已往前走了一段距离。因此被追者总是在追赶者前面。"

如柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑"数学派"所代表的毕达哥拉斯的" 1-0.999...>0"思想。然后,他又用这个悖论,嘲笑他的学生芝诺的"1-0.999...=0,但1-0.999...>0"思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的"1-0.999...=0,或1-0.999...>0"思想。

有人解释道:如果慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。

芝诺当然晓得阿喀琉斯能够捉住海龟,跑步者肯定也能跑到终点。

类似阿基里斯追上海龟之类的追赶问题,我们可以用无穷数列的求和,或者简单建立起一个方程组就能算出所需要的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说阿基里斯永远也追不上乌龟呢?然而问题出在这里:我们在这里有一个假定,那就是假定阿基里斯最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。上面说到无穷个步骤是难以完成。

以上初等数学的解决办法,是从结果推往过程的。悖论自己的逻辑并没有错,它之所以与实际相差甚远,在于这个芝诺与我们采取了不同的时间系统。人们习惯于将运动看做时间的连续函式,而芝诺的解释则采取了离散的时间系统。即不管将时间间隔取得再小,整个时间轴仍是由无限的时间点组成的。换句话说,连续时间是离散时间将时间间隔取为无穷小的极限。

本来这归根毕竟是一个时间的问题。譬如说,阿基里斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。实际情况是阿基里斯必然会在100/9秒之后追上乌龟。依照悖论的逻辑,这100/9秒可以无限细分,给我们一种很像永远也过不完的印象。但本来根本不是如此。这就类似于有1秒时间,我们先要过一半即1/2秒,再过一半即1/4秒,再过一半即1/8秒,这样下去我们永远都过不完这1秒,因为不管时间再短也可无限细分。但本来我们真的就永远也过不完这1秒了吗?显然不是。尽管看上去我们要过1/2、1/4、1/8秒等等,很像永远无穷无尽。但本来时间的流动是匀速的,1/2、1/4、1/8秒,时间越来越短,看上去无穷无尽,本来加起来只是个常数而已,也就是1秒。所以说,芝诺的悖论是不存在的。

飞矢不动

设想一支飞行的箭。在每一时刻,它位于空间中的一个特定位置。由于时刻无持续时间,箭在每个时刻都没有时间而只能是静止的。鉴于整个运动期间只包含时刻,而每个时刻又只有静止的箭,所以芝诺断定,飞行的箭总是静止的,它不大概在运动。

上述结论也适用于时刻有持续时间的情况。对于这种情况,时刻将是时间的最小单元。假设箭在这样一个时刻中运动了,那么它将在这个时刻的开始和结束位于空间的不同位置。这说明时刻具有一个起点和一个终点,从而至少包含两部分。但这显著与时刻是时间是的最小单元这一前提相矛盾。因此,纵然时刻有持续时间,飞行的箭也不大概在运动。总之,飞矢不动。

箭悖论的标准解决方案如下:箭在每个时刻都不动这一事实不可以说明它是静止的。运动与时刻里发生什么无关,而是与时刻间发生什么有关。假如一个物体在相邻时刻在相同的位置,那么我们说它是静止的,反之它就是运动的。

  *** 队伍

首先假设在操场上,在一瞬间(一个最小时间单位)里,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。

◆◆◆◆观众席A

▲▲▲▲伫列B

▼▼▼▼伫列C

B、C两个列队开始移动,如下图所示相对于观众席A,B和C分别向右和左各移动了一个距离单位。

◆◆◆◆观众席A

▲▲▲▲伫列B……向右移动

▼▼▼▼伫列C……向左移动

而此时,对B而言C移动了两个距离单位。也就是,伫列既可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾。因此伫列是移动不了的。

芝诺难题的解答与二分法

我是初一的,直接抄了,若有不周,还请见谅

芝诺悖论

芝诺的运动论辨全部得自亚里士多德在《物理学》中的转述,有四个:

1、二分法。物体在到达目的地之前必须先到达全程的一半,这个要求可以无限的进行下去,所以,如果它起动了,它永远到不了终点,或者,它根本起动不了。

2、阿喀琉斯(一译阿基里斯)。若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。(这个悖论有一个著名的故事,就是阿喀琉斯与乌龟赛跑,等乌龟先跑出一段后阿喀琉斯再起跑追赶,结果则是飞毛腿阿喀琉斯怎么也追不上乌龟。)

3、飞矢不动。任何东西占据一个与自身相等的处所时是静止的,飞着的箭在任何一个瞬间总是占据与自身相等的处所,所以也是静止的。

4、运动场。两列物体B、C相对于一列静止物体A相向运动,B越过A的数目是越过C的一半,所以一半时间等于一倍时间。

这是芝诺为了捍卫他老师巴门尼德关于“存在”不动、是一的学说,提出了著名的运动悖论和多悖论,以表明运动和多是不可能的。他的结论在常人看来当然很荒谬,但他居然给出了乍看起来颇令人信服的论证,故人们常常称这些论证构成了悖论或佯谬。不过,若细细推敲,其结论未必荒谬,其论证未必令人信服,故中性的称这些论证为芝诺论辨最为合适。

历史上对于芝诺悖论的评价和驳斥:

19、20世纪之交的绝对唯心主义者象布拉德雷全盘接受芝诺的论证和结论。他视运动、时间空间为幻象,芝诺论辩正好符合他的主张,当然全盘接受。在《现象与实在》中他写道:“时间与空间一样,已被最明显不过的证明为不是实在,而是一个矛盾的假象。”除布拉德雷之外,哲学史上大部分哲学家认为芝诺的结论是荒谬的,其论证有问题。不过,在不断检查其论证毛病的过程中,人们反倒发现了芝诺论辨的深刻之处。常常是人们自以为解决了芝诺悖论,不多久就又发现其实并没有解决。

已知最早的批评来自亚里士多德。关于二分法,他说,虽然不可能在有限的时间越过无限的点,但若把时间在结构上看成与空间完全一样,也可以无限分割,那么在无限的时间点中越过无限的空间点是可能的;关于阿喀琉斯,他说,如慢者永远领先当然无法追上,但若允许越过一个距离,那就可以追上了;关于飞矢不动,他说,这个论证的前提是时间的不连续性,若不承认这个前提,其结论也就不再成立了;关于运动场,他说,相对于运动物体与相对于静止物体的速度当然是不一样的,越过同样距离所花的时间当然也不一样。亚氏批评的意义主要在于使芝诺论辨显得更为明了,前面对诸论辨的转述就显然参照了亚里士多德的这些批评。

黑格尔对芝诺悖论的解决是:“运动的意思是说:在这个地点又不在这个地点;这就是空间和时间的连续性,——并且这才是使得运动可能的条件。”这个解决方法要点在于强调时间空间的连续性,而且对连续性赋与新的、特有的解释。不过,它似乎并没有直接针对芝诺论辨本身来提出批评,而且关于连续性的独特解释与数学和逻辑所要求的精确性不相容。受黑格尔的影响,我国哲学界一般认为芝诺不懂得连续性和间断性的辩证关系,把这两者机械的对立起来,所以造成运动悖论。这大意是说,芝诺的论证没使用辩证逻辑,因而是无效的。这种批评同样是笼而统之,不关痛痒。

进入19世纪以后,人们开始运用数学分析的方法来考证芝诺悖论。就那“阿喀琉斯与乌龟”这个悖论来说吧,现在的小学生遇到类似的追赶问题都会很容易的建立起一个方程组来算出所需要的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说阿喀琉斯永远也追不上乌龟呢?然而问题出在这里:我们在这里有一个假定,那就是假定阿喀琉斯最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。

高等数学运用极限理论与微积分也可以得出相同的结果,而且其解答思路与悖论的表述相似,就是把一段一段跑的距离加起来,这些数列虽然有无限多项,但其总和并不是一个无穷大的数目。但是问题是,即便综合是一个有限的数,但是它却是由无限多的数(无限多的步)组成的,作为一个活生生的人,阿喀琉斯如何来实践着无限多个的步骤呢?

事实上,隐藏在这几个悖论的背后,是我们对于运动本质的思考,即何谓运动(与参照系的关系)?怎样运动(如何迈出第一步)?

希腊时代犬儒学派的创始人第奥根尼对芝诺论辨有一个回答。据说当他的学生向他请教如何反驳芝诺时,他一言不发,在房间里走来走去,学生还是不理解,他说,芝诺说运动不存在,我这不是正在证明他是错的吗?这个故事很长时间被作为一个笑话,人们大多相信,第奥根尼根本没有弄懂芝诺的意思。芝诺并不是说在现象界没有运动这么一回事,他当然承认有,但他要说的是,虽然满目是物体在飞舞,但运动是不合理的,我们可以通过逻辑证明运动是不可能的。因此,我们所看到的运动是假象,并不真实,因为真实的东西一定是合乎逻辑的。

然而我想,近年来科学家们正在研究的时空可能的量子结构也许会为芝诺悖论带来一个新的思考方向。

具体来说,在人们的传统观念中,时间和空间(也可以结合起来说成是时空)都是连续的。正如100多年前,绝大多数人和科学家认为物质是连续的。尽管自古以来一些哲学家和科学家曾经推测如果把物质分解到足够小的块,就会发现它们是由微小的原子组成,然而当时几乎没有人认为能够证实原子的存在。今天我们已经得到了单个原子的图像,也研究了组成原子的粒子。物质的粒子性已经是过时的新闻了。 在最近几十年中,物理学家和数学家想知道空间是否也由离散块组成的。它是连续的,就像我们在学校里学到的那样,还是更像一块布,由根根纤维编织而成?如果能探测到足够小的尺度,我们是否能看到空间的“原子”,它们的体积不能被分割成更小的形态?对时间来说,情况又怎样呢?自然界是连续变化的,还是世界以一系列微小的步伐来进化。

如果世界真是如此构建的话,那么时空也就变成了“一份一份”的单元,我们就能得到一个最最极限的长度,一个最最极限的面积,一个最最极限的体积(圈量子理论认为,这个长度是普朗克长度10^-33厘米,面积是普朗克长度的平方,体积则是普朗克长度的立方)。而这在原则上就否定了芝诺第一、二悖论关于时空是连续的假设。

于是再回过头看芝诺关于阿喀琉斯追赶乌龟的悖论。随着阿喀琉斯越来越接近乌龟,他们之间的距离差越来越小,但这个距离现在并不是趋于无穷小,而是有一个极限――空间量子的最短距离。因为阿喀琉斯的速度大于乌龟,于是在这一确定距离的路程上他经过的时间要比乌龟短――胜负已分,在这里阿喀琉斯终于超过了乌龟!

类似的道理,对于第一个悖论,全程的中点并不是可以无限分割的,它同样遇到了空间量子距离的限制――因此从根本上否定了这个悖论。

但是,对于第三和第四个悖论却比较难回答。前面说了,第一第二个悖论事实上就是建立在假设时空是连续的基础上来说明无论是绝对运动或是相对运动都是不可能的;而第三和第四个悖论却体现了假如时空不是连续的,运动同样是不可能的。还有,芝诺悖论它不仅涉及到运动场所(背景)本质的特性问题,如第一、三悖论;也有关于运动本身(包括运动的发生和过程)的考量,如第二、四悖论——这是芝诺悖论的另一大难题。但是随着物理学的发展,我们对于运动本性的问题可能也可以回答一部分。

先来看一个实验,乃是关于中子是如何在重力场中下落的。东西往下落,这可谓是最稀松平常的一个运动现象了,它是最最基本的运动方式之一,我们每天都能见到,实践这种运动,并且说白了,芝诺的飞矢实际上做的就是这种运动。那么,在中子下落的过程中,科学家们观察到什么有趣的事情了吗?答案很出乎人们的预料:实验过程中的中子在下落中都只出现在不连续的高度上!这说明,重力场本身是已量子化的,运动其间的物体的运动过程同样是量子化的,它就如电子跃迁只能出现在不连续的能级上的行为一样(这已被量子力学所深入考察印证)。于是,整个世界就如一部异常精细的电影,我们如胶片般一帧一帧地随着时间运动、演化。只不过一帧帧间的时间间隔不是0.04秒,而是一单位普朗克时间。帧与帧间的动作差别也是极其微小的,最小单位乃是一单位普朗克长度、面积或是体积。芝诺对于飞矢不动的现象的论断是正确的,因为一帧画面它就是静止的,但他由此导出的运动不可能的结论却是值得商量的。

也许你要问,为何到现在我还不能说芝诺是错的,仍要用“值得商量”这个词?那是因为无论前面说的时空结构是量子化的,还是运动过程是量子化的也好,这些都只解决了一个“运动过程是可能的”的问题,它只是将经典的芝诺悖论转化为“量子芝诺悖论”而已。芝诺悖论的更深的意义在于它还质疑了“运动的发生”也就是为何会动或称“第一步”的问题。就算把“飞矢”的问题量子化后,如果加进考虑“坍缩”,还会出现一个奇怪现象:假如我们一直观察系统,也就是飞矢的“每一帧”,那么因为我们的观察它的波函数必然总是在坍缩,薛定谔波函数从来就没有机会去发展和演化。这样,它必定一直停留在初始状态,看上去的效果相当于飞矢停滞了。在这个问题上我还没有什么好的思路,有一点想法就是它也许与我们的精神对于量子效应的决定作用有关:意识使得波函数坍缩——使得物质波不再随着薛定谔方程演化,而成为一个客观实在(仅限于量子的哥本哈根解释)。物质由这样诞生,反过来说要是使运动也有可能,人意识的作用大概也必不可少吧。想到这里,我不由得再次敬佩起芝诺来,他所提出的悖论是多么的深刻啊,真是值得我们好好探究再探究。

芝诺悖论是怎样解决的啊(芝诺悖论是什么?芝诺悖论的内容是什么)

芝诺悖论是什么?芝诺悖论的内容是什么

答:),而芝诺悖论中既承认广延,又强调无广延的点。这些悖论之所以难以解决,是因为它集中强调后来笛卡尔和伽桑迪为代表的机械论的分歧点。三个例子 追乌龟 阿喀琉斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为......详细

芝诺悖论怎么解决啊

问:即勇士跑不过乌龟的悖论,我比较清楚了,关键是如何解决,希望大家多指......详细

以上介绍的就是《芝诺悖论是怎样解决的啊(芝诺悖论是什么?芝诺悖论的内容是什么)》的具体内容,希望本篇文章能帮助到你了解更多的学习知识和生活常识。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人,并不代表关注常识网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。

联系我们

在线咨询:点击这里给我发消息

微信号:CHWK6868

工作日:9:30-18:30,节假日休息