1. 关注常识网首页
  2. 教育

哥德巴赫猜想是指什么(哥德巴赫猜想是什么?有什么意义吗?)

哥德巴赫猜想简介哥德巴赫猜想是一个关于质数的猜想,由哥德巴赫提出来的,并且当时提出来之后被很多著名的数学家进行的验证,目前依然没有办法能够证明这个猜想的具体性质...

下面,我将为大家展开关于哥德巴赫的简介的讨论,希望我的回答能够解决大家的疑问。现在,让我们开始聊一聊哥德巴赫的简介的问题。

哥德巴赫猜想是指什么(哥德巴赫猜想是什么?有什么意义吗?)

哥德巴赫猜想是指什么

哥德巴赫猜想简介

哥德巴赫猜想是一个关于质数的猜想,由哥德巴赫提出来的,并且当时提出来之后被很多著名的数学家进行的验证,目前依然没有办法能够证明这个猜想的具体性质,而世界三大数学猜想中的费马猜想以及四色猜想已经得到了很好的证明,只有哥德巴赫猜想依然没有完全得到证实,在当今的数学领域最为接近这个猜想的数学家是来自亚洲的陈景润,下面带大家具体的认识一下哥德巴赫猜想以及世界三个数学猜想的具体内容和研究现状。

哥德巴赫

彼得堡科学院院士哥德巴赫正在研究把任何数表示成几个质数的和的问题。哥德巴赫发现,总可以把任何一个数分解成不超过三个质数和。但他不能证明这个命题,甚至找不到证明它的方法,于是,他写信全告诉欧拉这件事。在1742年6月7日的信中,哥德巴赫告诉欧拉,他想冒险发表下面的假定;“大于5的任何数(正整数),是三个质数的和”。欧拉回信说:他认为“每一个偶数都是两个质数的和”这论断是一个完全正确的定理。显然,哥德巴赫的断语就是欧拉这论断的简单推论(因为:奇数=3+偶数) 。然而,欧拉也不能证明它。这就是著名的哥德巴赫猜想。

关于哥德巴赫问题,不论是提出问题的哥德巴赫本人还是大数学家欧位都不能做出什么结果。上世纪一个超群数学家康托耐心地试验了从2到1000的所有偶数,说明在这范围内,哥德巴赫断言是成立的,但这能说明什么呢?此后,多少著名的学者都为哥德巴赫问题花费了无数的精力,力图开辟解决这一问题的道路,或者将它与数学的其他问题联系起来。但要严格证明它,却毫无结果,1912年,数论大师兰道在国际数学家会议上说:这个问题要用近代数学工具来解决是绝对不可能的。

到二十年代初期,问题才有了一点进展,挪威数学家布朗用古老的筛法证明了:每一个偶数是九个互数因子之和加九个素数因子之积,简记为(9+9),延自这一派的方法,1924年拉德马哈尔证明了(7+7),1932年爱斯斯尔曼证明了(6+6);1938年,布赫斯塔勃先后证明了(5+5)和(4+4);1956年维诺格拉多夫证明的(3+3);1958年我国数学家王元证明了(2+3)。

另一证明方法是1948年由匈牙利数学家兰恩易开辟的,他证明了每一个大偶数都是一个素数和一个“素因子示超过六个的”数之和,简记为(1+6),1962年,山东大学教授潘承洞证明了(1+5),同年,他又和王元证明了(1+4);三年后1965年,布赫斯塔勃、维诺格拉多夫和庞皮艾黎都证明了(1+3)。

如何评价哥德巴赫猜想

哥德巴赫猜想的意义

哥德巴赫猜想的内容十分简洁,但它的证明却异乎寻常的困难。从哥德巴赫写信之日起,直至1920年,并没有一个方法可以用来证明这个问题。 1900年,在法国巴黎召开的第2届国际数学大会上,德国数学家大卫·希尔伯特在他著名的演说中,为20世纪的数学家建议了23个问题,而哥德巴赫猜想(1)就是他第八个问题的一部分。 1912年,在英国剑桥召开的第5届国际数学大会上,德国数学家E·朗道将哥德巴赫猜想列为数论中按当时数学水平不能解决的4个问题之一。 1921年,数论泰斗、英国数论学家哈罗德·哈代在德国哥德哈根数学会的演讲中,宣称猜想(1)的困难程度“是可以与数学中任何未解决的问题相比拟的”。 我国数学家王元说:“哥德巴赫猜想不仅是数论,也是整个数学中最著名与困难的问题之一。”

为什么一加一等于二?

数学上,非常有名的“(1+1)”,它就是著名的哥德巴赫猜想。为了打破这个猜想,需要证明“1+1=2”。

18世纪时,德国数学家哥德巴赫偶然发现,每个不小于6的偶数都是两个奇素数之和。例如3+3=6; 11+13=24。他试图证明自己的发现,却屡战屡败。

1742年,无可奈何的哥德巴赫只好求助当时世界上最有权威的瑞士数学家欧拉,提出了自己的猜想。欧拉很快回信说,这个猜想肯定成立,但他无法证明。

有人立即对一个个大于6的偶数进行了验算,一直算到了330000000,结果都表明哥德巴赫猜想是对的,但就是不能证明。于是这道每个不小于6的偶数都是两素数之和[简称(1+1)]的猜想,就被称为“哥德巴赫猜想”,

1956年底,已先后写了四十多篇论文的数学家陈景润调到科学院,开始在华罗庚教授指导下专心研究数论。1966年5月,他象一颗璀璨的明星升上了数学的天空,宣布他已经证明了(1+2),即“充分大的偶数都能表示为一个素数及一个不超过二个素数的积之和”。

扩展资料:

皮亚诺的这五条公理用非形式化的方法叙述如下:

①0是自然数;

②每一个确定的自然数 a,都有一个确定的后继数x' ,x' 也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等);

③如果b、c都是自然数a的后继数,那么b = c;

④0不是任何自然数的后继数;

⑤设S是自然数集的一个子集,且(1)0属于S;(2)如果n属于S,那么n'也属于S。

(这条公理也叫归纳公理,保证了数学归纳法的正确性)

更正式的定义如下:一个戴德金-皮亚诺结构是这样的一个三元组(X, x, f),其中X是一个集合,x为X中一个元素,f是X到自身的映射,且符合以下条件:

x不在f的值域内;

f为一个单射;

若x∈A 且 " a∈A?蕴涵?f(a)∈A",则A=X。

该结构所引出的关于自然数集合的基本假设:

1、N(自然数集)不是空集;

2、N到N内存在a→a'的一一映射;

3、后继元素映射的像的集合是N的真子集,事实上即N\{1}(或N\{0});

4、若N的子集P既含有非后继元素的元素,又有含有子集中每个元素的后继元素,则此子集与N相等。

1+1的证明:

∵1+1的后继数是1的后继数的后继数,即3,

∴2的后继数是3。

根据皮亚诺公理③,可得:1+1=2。

百度百科-陈氏定理

百度百科-1+1=2

哥德巴赫猜想是什么?有什么意义吗?

哥德巴赫猜想(Goldbach's conjecture)是数论中存在最久的未解问题之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。

用现代的数学语言,哥德巴赫猜想可以陈述为:任一大于2的偶数,都可表示成两个素数之和。

这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而将一个给定的偶数分拆成两个素数之和,则被称之为此数的哥德巴赫分拆。

哥德巴赫猜想在提出后的很长一段时间内毫无进展,直到二十世纪二十年代,数学家从组合数学与解析数论两方面分别提出了解决的思路,并在其后的半个世纪里取得了一系列突破。目前最好的结果是陈景润在1973年发表的陈氏定理(也被称为“1+2”)。

意义

民间数学家解决哥德巴赫猜想大多是在用初等数学来解决问题,然而初等数学无法解决哥德巴赫猜想。哥德巴赫猜想也是二十世纪初希尔伯特第八问题中的一个子问题。

扩展资料

背景

1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。”

1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。

百度百科-哥德巴赫猜想

哥斯罢赫猜想是怎么回事

哥德巴赫猜想简介 当年徐迟的一篇报告文学,中国人知道了陈景润和哥德巴赫猜想。 那么,什么是哥德巴赫猜想呢? 哥德巴赫猜想大致可以分为两个猜想: ■1.每个不小于6的偶数都是两个奇素数之和; ■2.每个不小于9的奇数都是三个奇素数之和。 ■哥德巴赫相关 哥德巴赫(Goldbach C.,1690.3.18~1764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年,到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职。 哥德巴赫猜想的来源 1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。 在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道: "我的问题是这样的: 随便取某一个奇数,比如77,可以把它写成三个素数之和: 77=53+17+7; 再任取一个奇数,比如461, 461=449+7+5, 也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。 但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。" 欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。” 不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式: 2N+1=3+2(N-1),其中2(N-1)≥4. 若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。 但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。 现在通常把这两个命题统称为哥德巴赫猜想 哥德巴赫猜想的小史 1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可即的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。 到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大偶数n(不小于6)的偶数都可以表示为九个质数的积加上九个质数的积,简称9+9。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。 目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。 ■哥德巴赫猜想证明进度相关 在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下: 1920年,挪威的布朗证明了“9 + 9”。 1924年,德国的拉特马赫证明了“7 + 7”。 1932年,英国的埃斯特曼证明了“6 + 6”。 1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。 1938年,苏联的布赫夕太勃证明了“5 + 5”。 1940年,苏联的布赫夕太勃证明了“4 + 4”。 1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。 1956年,中国的王元证明了“3 + 4”。 1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。 1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。 1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 + 2 ”。 从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。自"陈氏定理"诞生至今的40多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。

哥德巴赫猜想是指什么(哥德巴赫猜想是什么?有什么意义吗?)

好了,今天我们就此结束对“哥德巴赫的简介”的讲解。希望您已经对这个主题有了更深入的认识和理解。如果您有任何问题或需要进一步的信息,请随时告诉我,我将竭诚为您服务。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人,并不代表关注常识网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。

联系我们

在线咨询:点击这里给我发消息

微信号:CHWK6868

工作日:9:30-18:30,节假日休息