数学中一些常用的数集及其记法(常用的数集符号有什么?)
数学中一些常用的数集及其记法如下:数学里,常用一些特定的大写英文字母来表示某些常见数集。高中数学里的常见数集及其字母表示(符号表示)分别如下:(1)正整数集:所...
接下来,我将为大家解答有关数学集合符号及含义的问题,希望我的回答对大家有所帮助。现在,我们就开始探讨一下数学集合符号及含义的话题吧。

数学中一些常用的数集及其记法
数学中一些常用的数集及其记法如下:
数学里,常用一些特定的大写英文字母来表示某些常见数集。高中数学里的常见数集及其字母表示(符号表示)分别如下:
(1)正整数集:所有正整数构成的集合。正整数包括:1,2,3,4,5,……。
正整数集的集合符号为:N+(注:“+”为下标),也可记为N*(注:“*”为上标)。
(2)自然数集:不小于0的所有整数构成的数集,也称为“非负整数集”。自然数(非负整数)包括:0,1,2,3,4,5,……。
自然数集的集合符号为:N。
(3)整数集:所有整数构成的集合。整数包括:0,±1,±2,±3,±4,±5,……。
整数集的集合符号为:Z。
(4)有理数集:所有有理数构成的集合。有理数包括:整数、分数、有限小数、无限循环小数等。
有理数集的集合符号为:Q。
(5)实数集:所有实数构成的集合。实数包括:有理数、无理数。
实数集的集合符号为:R。
(6)复数集:所有复数构成的集合。复数包括:实数、虚数。
复数集的集合符号为:C。
集合中的符号各表示什么?
数学集合符号:
1、N:非负整数集合或自然数集合{0,1,2,3,…}
2、N*或N+:正整数集合{1,2,3,…}
3、Z:整数集合{…,-1,0,1,…}
4、Q:有理数集合
5、Q+:正有理数集合
6、Q-:负有理数集合
7、R:实数集合(包括有理数和无理数)
8、R+:正实数集合
9、R-:负实数集合
10、C:复数集合
11、?:空集(不含有任何元素的集合)
集合的运算
(1)集合交换律:A∩B=B∩A;A∪B=B∪A。
(2)集合结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
集合的表示方法
(1)列举法:把集合中的元素一一列举出来,并用花括号括起来表示集合的方法叫列举法;
(2)描述法:用集合所含元素的共同特征表示集合的方法,称为描述法;
(3)文氏(Venn)图法:画一条封闭的曲线,用它的内部来表示一个集合。
数学中集合有那些符号?
数学集合符号如下:
1、N:非负整数集合或自然数集合{0,1,2,3,…}
2、N*或N+:正整数集合{1,2,3,…}
3、Z:整数集合{…,-1,0,1,…}
4、Q:有理数集合
5、Q+:正有理数集合
6、Q-:负有理数集合
7、R:实数集合(包括有理数和无理数)
8、R+:正实数集合
9、R-:负实数集合
10、C:复数集合
11、? :空集(不含有任何元素的集合)
扩展资料:
集合基础知识:
1、定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集;
2、表示方法:集合通常用大括号{ ?}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3、关于集合的元素的特征
(1)确定性:给定一个集合,那么任何一个元素在或不在这个集合中就确定了; ?
(2)互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的;
(3)无序性:即集合中的元素无顺序,可以任意排列、调换。
4、元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)
(1)若a是集合A中的元素,则称a属于集合A;
(2)若a不是集合A的元素,则称a不属于集合A。
5、集合的表示方法
(1)列举法:把集合中的元素一一列举出来, 并用花括号括起来表示集合的方法叫列举法;
(2)描述法:用集合所含元素的共同特征表示集合的方法,称为描述法;
(3)文氏(Venn)图法:画一条封闭的曲线,用它的内部来表示一个集合。
参考资料:
常用的数集符号有什么?
常用的数集符号:自然数集,正整数集,整数集,有理数集,实数集的表示符号分别为:
1、自然数集即是非负整数集。组成的集合称为自然数集,记作N;
2、全体正整数组成的集合称为正整数集,记作N*,Z+或N+;
3、全体整数组成的集合称为整数集,记作Z;
4、全体有理数组成的集合称为有理数集,记作Q;
5、全体实数组成的集合称为实数集,记作R。
扩展资料:
1、全体非负整数的集合通常称非负整数集(或自然数集)。非负整数集包含0、1、2、3等自然数。数学上用黑体大写字母"N"表示非负整数集。非负整数包括正整数和零。非负整数集是一个可列集。
2、集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素,数集就是数的集合。集合的范围比数集的范围大,数集只是集合中的一种而已,属于数集的一定属于集合,但属于集合的不一定是数集。
3、其他数集的集合符号:
(1)全体实数组成的集合称为实数集,记作R;
(2)全体虚数组成的集合称为虚数集,记作I;
(3)全体实数和虚数组成的复数的集合称为复数集,记作C。
参考资料:
百度百科_数集
好了,今天关于数学集合符号及含义就到这里了。希望大家对数学集合符号及含义有更深入的了解,同时也希望这个话题数学集合符号及含义的解答可以帮助到大家。
